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Abstract
Gene knockdown and gene-silencing pathways in eukaryotic organisms are associated with small RNAs 20 to 25 nucleotides in
length, which include microRNAs (miRNAs) and small interfering RNAs (siRNAs). These small RNAs are recruited to repress
gene expression upstream or downstream of the transcription pathway. RNA interference (RNAi) is a biological inhibitor of gene
expression that results in the destruction of messenger RNAs (mRNAs), leading to the inhibition of protein production. Indeed,
RNA silencing plays a key role in plant development in terms of the plant’s response to both biotic and abiotic stresses.
Conversely, Viral Suppressors of RNA silencing (VSRs) are proteins that hamper antiviral RNAi activation in plants, lead to
suppress plant RNA-silencing. These VSR proteins prevent the induction of the plant antiviral RNAi immune response. This
review focuses on small RNAs in plants and their roles in the responses of plants to biotic and abiotic stresses.
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Abbreviations
RNA ribonucleic acid
mRNA messenger RNA
RNAi RNA interference
miRNA microRNA
RSS RNA silencing suppressor
dsRNA double-stranded RNA
Pol II RNA polymerase II
Pol III RNA polymerase III
RNase III ribonuclease III
RISC-miRNA RImR
tRNA transfer RNA
RdRp RNA-dependent RNA polymerase

Introduction

Small non-coding RNAs (sncRNAs), which are 20–25 nucleo-
tides, are vital regulators of gene expression. In plants, gene
regulation through sncRNAs is involved in the plant’s response
and adaptation to abnormal conditions through either transcrip-
tional gene silencing (TGS) or post-transcriptional gene silenc-
ing (PTGS) (Covarrubias and Reyes 2010). These sncRNAs
interfere with messenger RNA (mRNA) translation, leading to
the regulation of various biological processes (Axtell and
Bowman 2008). In eukaryotes, sncRNAs are divided into two
important groups, according to their biogenesis and functions:
microRNAs (miRNAs) and small interfering RNAs (siRNAs).
These sncRNAs are highly conserved regulators of gene expres-
sion in both plants and animals (Liu and Paroo 2010). In plants,
RNA silencing plays crucial roles not only at the endogenous
level (such as repetitive genomic sequences and transposons),
but also at the exogenous level (Carthew and Sontheimer 2009;
Martinez de Alba et al. 2013). BRNA silencing^ was subse-
quently used as a term for specific inhibition pathwaysmediated
by small RNAs. This mechanism was mediated at the TGS
level, either through DNA methylation and chromatin modifi-
cation, or at the PTGS level through RNA cleavage and repres-
sion (Martinez de Alba et al. 2013; Movahedi et al. 2015a). In
oppose of sncRNAs, long non-coding RNAs (lncRNAs) are
polyadenylated and capped RNAs with more than 200 nucleo-
tides (Yang et al. 2015). Furthermore, lncRNAs involved in
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PTGS or TGS enable to combine with siRNAs, TFs
(Transcription factors) and DNA leading to remodel chromatin,
histone modification and direct de novo DNA methylation in
response to biotic or abiotic stresses (Wang et al. 2017).

MicroRNAs

Firstly, the downregulation of miRNAs was discovered in
nematode worm Caenorhabditis elegans (Lee et al. 1993).
This function was first described in plants (Arabidopsis) when
it was improved that JAW miRNA is involved in the regula-
tion of shape of leaves (Palatnik et al. 2003). MicroRNAs are
major regulatory molecules that share several properties with
siRNAs (Xie et al. 2015). In eukaryotic organisms,
microRNAs, which are noncoding and single-stranded
RNAs, target mRNAs to play important roles in response to
various stresses and plant development based on morpholog-
ical and physiological processes (Jian et al. 2017; Stepien et al.
2017). In addition, recent reports have showed that complex
miRNAs are involved in salt and drought stresses based on
hormone regulation during seed germination (Ruiz-Ferrer and
Voinnet 2009; Jian et al. 2016). RNA polymerase II (Pol II)
transcribes nuclear- encoded MIR genes resulting in forming
hairpin primary miRNAs (pri-miRNAs) (Khraiwesh et al.
2012). In plants, Pri-miRNAs include a lower stem around
15 nucleotides under duplex miRNA area, followed by an
internal loop (Fig. 1, miRNA) (Werner et al. 2010). Studies
also revealed that the lower stem is an appropriate position for
binding the Dicer-like protein 1 (DCL1) cleavage enzyme
(Fig. 1, miRNA) (Werner et al. 2010).

The DAWDLE, a DCL1-interacting protein, interacts with
primary miRNAs (pri-miRNAs) to form a stable molecule,
followed by linking of Cap-binding protein (CBP20/80) at
the 5′ cap section (Nicolas et al. 2012). The complex of
DCL1, zinc finger protein serrate (SE), HYL1, and CBP20/
80 proteins bends pri-mRNA at the 5′-end to form a d-body
structure (Fig. 1) (Nicolas et al. 2012). In the first cleavage,
DCL1 dices pri-miRNA to separate lower stem to form pre-
cursor miRNA (pre-miRNA) (Fig. 1, miRNA). DCL1 then
catalyzes the second cleavage to separate the terminal loop
and upper stem from pri-miRNA to generate duplex pre-
miRNA, a substrate for Hua Enhancer 1 (HEN1) (Fig. 1,
miRNA). HEN1, a nuclear methyltransferase, prevents duplex
pre-miRNA by methylating the 3′ end from each strand with a
2’-O-methyl group of the degradation (Nicolas et al. 2012),
leading to produce miRNA/miRNA duplexes. Then, the
exportin-5 homologue HASTY translocates methylated
miRNA/miRNA duplexes from the nucleus into the cyto-
plasm to bind the appropriated mRNA (Fig. 1).

The function of miRNAs frequently occur through binding
to the 3’-UTR region of mRNA to suppress translation or in

the coding region to prevent the function of RNA polymerase
(Fig. 2) (Cuperus et al. 2011; Nicolas et al. 2012).

In the cytoplasm, RNA-induced silencing complex (RISC),
which contains Argonaute 1 (AGO1) as the RNA slicer, loads
miRNA onto target mRNA by forming an RISC-miRNA
(RImR) complex. As shown in Fig. 2, the RImR enable to
disrupt protein translation at coding and non-coding (3’-
UTR) regions of mRNA. Through non-coding region, RImR
inhibits of initiating binding protein complex involved in
translation. Binding protein complex, poly-A binding protein
(PABPC1), m7G-cap binding protein (eIF4E), and translating
factor (eIF4F), forms an mRNA loop that leads to protein
translation in the absence of miRNA. Furthermore, RImR in-
hibits of either initiation subunits of ribosome (60s and 40s)
on mRNA or translating protein by connected ribosome. On
the other hand and through coding region, RImR recruits the
SQN and HSP90 proteins to splice mRNA by AGO1 directly,
and leading to RNAi.

Responsive miRNAs against stresses

Regulatory miRNAs respond to biotic and abiotic environmen-
tal stresses, including salinity, drought, cold, and fungal and
bacterial infections (Zhou et al. 2008, 2010; Ram and Sharma
2013; Sun et al. 2015). Micro RNAs often control hormone
signaling in plants to make a resistance against salt stress. For
instance, salt stress stimulates miR393 that is enable to knock-
down the expression of AFB2 and TIR genes, which are respon-
sible for increasing tolerance against salinity (Supplementary 1)
(Navarro et al. 2006). Iglesias et al. (2014) have reported that
miR395 targets the genes that encode superoxide dismutase,
laccase, and ATP sulfurylases (APS1/2/3/4). These researchers
have stated that various environmental factors lead to the induc-
tion of miRNAs. Other miRNAs such asmiR393,miR397b and
miR401 regulate the plant response to drought, abscisic acid
(ABA), cold, and salt stresses (Fileccia et al. 2017). In addition,
miR319c is induced only by cold, while miR389a is downregu-
lated by all stresses (Fileccia et al. 2017). Recently, 48 miRNAs
were detected in Populus trichocarpa that regulate the genes,
which are dependent on developmental processes and stress
responses (Kitazumi et al. 2015).

Achard et al. (2004) reported that both gibberellic acid (GA)
andABA regulate the expression ofmiR159 (Supplementary 1).
In addition, ABA regulates the expression of miR160, miR169
and miR398 (Supplementary 1) (Jung and Kang 2007; Liu et al.
2007; Li et al. 2008; Jia et al. 2009).

(Liu et al. 2008) reported that miR167, miR393, and miR171
are involved in responses to abiotic stresses such as salinity and
H2O2 (Fig. 3). Liu et al. (2008) also reported that in Arabidopsis
thaliana, 35 miRNAs are upregulated by salt stress (Fig. 3).
Baek et al. (2016) reported that in Arabidopsis thaliana, the
regulatormiR399f is involved in salt, drought, and ABA signal-
ing (Fig. 3, supplementary 1).
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Recent researches have been reported that in plants, abiotic
stresses show different regulations on miRNAs (Song et al.
2013; Fang et al. 2014; Chen et al. 2015; Hajyzadeh et al.
2015). When the miR156, miR159, miR164, miR168, miR170
are downregulated by abiotic stresses resulting in decreasing of
tolerance of plants against environmental stresses, the miR169,
miR171, miR319, miR395, miR408 are upregulated by abiotic

stresses resulting in increasing of tolerance of plant against en-
vironmental stresses (Song et al. 2013; Fang et al. 2014; Chen
et al. 2015; Hajyzadeh et al. 2015). Liu et al. (2008) reported that
the functions of some miRNAs differ among plant species. For
example, in Arabidopsis, the miR156, miR159 and miR168 are
upregulated in response to salt stress (Fig. 3). Furthermore, in
Oryza sativa, the miR169 and miR397 are upregulated in

Fig. 1 Small RNA pathways in plants: 1) RNA PolII transcribes non-
coding MIR genes to form hairpin primary miRNAs. The complex of
DCL1, HYL1, SE, and CBP20 or CBP80 (DHSC) proteins binds to
pri-miRNAs to form a D-body structure. DCL1 dices pri-miRNAs to
form precursor miRNAs (pre-miRNA). HEN1 methylates miRNA/
miRNA* duplex to prevent their degradation. Hasty proteins transfer
the duplex from the nucleoplasm to the cytoplasm. RISC guides
miRNA/miRNA* duplex to the target mRNA. 2) Convergent genes:
Pol II forms dsRNA. DCL2 processes dsRNA into nat-siRNAs. 3)
Trans-acting siRNAs: First, PolII transcribes non-coding TAS genes.
TAS precursor mRNA generates an appropriate substrate for recruiting
RDR6, SGS3, and SDE5. This results in the generation of dsRNAs. In the
nucleus, DCL4 and DRB4 cooperate to dice dsRNA, leading to generate
secondary 21-nucleotide ta-siRNAs. The HEN1 protein prevents ta-
siRNA duplexes by methylating. AGO1 proteins are loaded onto ta-
siRNA duplexes, which are transferred into the cytoplasm, leading to

the suppression of the target mRNA. 3) RdDM pathway: PolIV
transcribes particular regions of the genome, such as methylated DNA,
repetitive sequences, and transposons, to form ssRNA. DTF1 recruits
RDR2, RDM4, SR45, SHH1, and CLSY1 proteins to convert ssRNA
to dsRNA. DCL3 processes dsRNA to 24-nucleotide-long siRNAs.
AGO4/6/9 associates with siRNAs to form RITS complex. PolV
transcribes scaffold RNA to recruit RITS, RDM1, KTF1, DDR, ZOP1,
DMSII, SW13B, and DRM1/2 for transfering methyl groups to remodel
chromatin, leading to gene silencing. 4) endoIR-siRNA: Pol II transcribes
genes that contain long inverted repeat sequences to form hairpin
dsRNAs. DCL2, 3, and 4 dice this hairpin in the sense-antisense region
to form endoIR-siRNAs. HEN1 thenmethylates endoIR-siRNA duplexes
to prevent their degradation. Finally, the RISC complex containing
AGO1 loads onto endoIR-siRNA, leading to the suppression of the
target mRNA
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response to cold stress (Zhou et al. 2008) (Supplementary 1).
Studies on poplar indicated that themiR168a, b, andmiR477a, b
are upregulated, whereasmiR475a, b, miR476a, and miR156g-j
are downregulated in response to cold stress (Rossi et al. 2015).
In addition, in Arabidopsis the miR165, miR166, miR396,
miR393, and miR408 are downregulated in response to cold
stress (Liu et al. 2008) (Fig. 3). Biotic and abiotic stresses lead
to the accumulation of reactive oxygen species (ROS) such as
superoxide dismutase (SOD), guaiacol peroxidase (POD), and
catalase (CAT) resulting in increasing levels of H2O2, Ō2, and
hydroxyl radicals (Liu et al. 2009; Li et al. 2011;Movahedi et al.
2015b, c; Rossi et al. 2015). Plants respond to biotic and abiotic
stresses by producing enzymatic and non-enzymatic antioxidant
molecules that scavenge ROS (Movahedi et al. 2015b). In
Arabidopsis, miR398 targets CSD1/2/3 genes to regulate the
expression of Cu-Zn SODs (Iglesias et al. 2014)
(Supplementary 1). Kitazumi et al. (2015) reported that the ac-
cumulation of Cu-Zn SOD results in downregulation of tran-
scription of CSD1/2/3 proteins due to expression of miR398.
Yamasaki et al. (2007) explained that to synthesize the required
proteins, Cu2+ stimulates the expression of miR398 to remove
Cu2+ from Cu-Zn SODs. In rice, H2O2 accumulation leads to

upregulation of miR169, miR397, miR827, and miR1425, and
downregulation ofmiR528, which directs the cell to increase its
ROS-scavenging activity (Li et al. 2011).

Small interfering RNAs

In plants, 70–80-nucleotide-long transcript mRNAs generate
stem-loop structures as a substrate for DCL proteins to cut the
stems of dsRNA for the production of siRNAs (Bartel 2009;
Voinnet 2009; Cuperus et al. 2011; Nicolas et al. 2012). Then,
nuclear HEN1 methylates siRNAs to prevent their degrada-
tion. In addition, the RISC complex binds to and unwinds
double-stranded siRNAs through its helicase activity
(Guleria et al. 2011). Finally, the PAZ domain, which com-
prises a complex of Ago, a P-element induced wimpy testis
(PIWI), and Zwille, associates with siRNAs to direct them
toward mRNA molecules with endonuclease activity
(Arribas-Hernandez et al. 2016). Double-stranded RNAs, nec-
essary for production of siRNAs, are generated from a variety
of sources. These include natural cis-antisense transcripts,
trans-acting siRNAs, endogenous inverted repeated DNA,

Fig. 2 Post transcriptional gene silencing (PTGS): 1) RImR inhibits of
initiating binding protein complex involved in translation. 2) RImR
inhibits of initiation subunits 60s and 40s of ribosome. 3) RImR inhibits

protein translation. 4) RImR at the coding region recruits the SQN and
HSP90 proteins to splice mRNA by AGO1, leading to RNAi
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the RdDM pathway, and viral RNAs. SiRNAs move cell to
cell throughout whole the plant to facilitate systemic RNA
silencing (Serra-Soriano et al. 2017). Small interfering
RNAs are divided into trans-acting small interfering RNAs
(tasiRNAs), secondary transitive siRNAs, long small interfer-
ing RNAs (lsiRNAs), heterochromatic small interfering
RNAs (hcsiRNAs), primary siRNAs, natural antisense
transcript-derived small interfering RNAs (nat-siRNAs), and
repeat associated small interfering RNAs (ra-siRNAs)
(Ramachandran and Chen 2008; Ghildiyal and Zamore
2009; Contreras-Cubas et al. 2012; Wei et al. 2012;
Bulgakov and Avramenko 2015; Conti et al. 2017; Tsuzuki
and Watanabe 2017).

Classification of siRNAs

Cis-natural antisense siRNAs

Convergent genes are complementary strands of DNA at the
same locus that transcribe cis-natural antisense transcripts
(cis-NATs) (Martinez de Alba et al. 2013). Cis-NATs generate
dsRNA precursors, which activate DCL2, leading to form nat-
siRNAs. The complementary sense and antisense sequences
from Cis-NATs genes transcribe to mRNAs, leading to over-
lap close to the stop codon and form a dsRNA at the 3′-end
area (Bouchard et al. 2015). Katiyar-Agarwal et al. (2006)
reported that in the first step AGO proteins load on the prima-
ry nat-siRNAs to cleave the expressed complementary

transcript, resulting in the formation of nat-ssRNAs. Katiyar-
Agarwal et al. (2006) also reported that in the second step
PolIV, RNA-dependent RNA polymerase 6 (RDR6), and the
RNA binding suppressor of gene silencing 3 protein (SGS3),
which protects fragments against degradation, are recruited to
convert ssRNA to dsRNA, resulting in the generation of 21-
nucleotide nat-siRNAs. Finally, exportin-5 homologue
HASTY, transfers the nat-siRNAs from the nucleus to the
cytoplasm, thereby suppressing the expression of the target
mRNA by PTGS (Fig. 1).

Trans-acting siRNAs

Plants possess long, non-coding transcripts drive the produc-
tion of trans-acting siRNAs (ta-siRNA) encoded by trans-
acting siRNA (TAS) genes (Wu 2013). Jauvion et al. (2010)
reported that in plants there exist four types of TAS loci and
three important miRNAs involved in the ta-siRNA pathway.
Jauvion et al. (2010) also stated that THO/TREX complexes
transfer long non-coding RNAs to the AGO/miRNA com-
plex, leading to loading of AGO1 on two miRNAs (miR173
and miR823) and AGO7 on miR390, resulting in cleavage of
their RNA target at the TAS locus. In the ta-siRNA pathway,
SGS3 recruits RDR6 and the putative RNA export factor
SDE5 to convert the RNA precursor to dsRNA (Elmayan
et al. 2009). Then, the DCL4 protein recruits the DRB4 pro-
tein to dice dsRNA, resulting in generating 21-nucleotide ta-
siRNAs (Elmayan et al. 2009). The HEN1 protein methylate

Fig. 3 Schematic of miRNAs included in abiotic stresses in Arabidopsis thaliana. Shared colors represent the same miRNAs in different stresses
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siRNA duplexes to prevent of degradation and transfer them
to the cytoplasm (Fig. 1). Wu (2013) reported that AGO1 is
loaded onto ta-siRNA to guide cleavage of the target mRNA
in PTGS.

SiRNAs dependent on RdDM

Repetitive sequences and transposons are two important triggers
of the RdDM pathway, which is dependent on DNA-directed
RNA polymerase IV (PolIV) and DNA-directed RNA polymer-
ase V (PolV), together with 20–24-nucleotide siRNAs
(Movahedi et al. 2015a). Recent studies have shown that
AGO4/6/9 is loaded onto methylated, single-stranded siRNA
to trigger de novo methylation and transcriptional silencing of
transposons and repetitive sequences (Martinez de Alba et al.
2013; Zhu et al. 2013). It has been shown that the functions of
AGO proteins are on the basis of their expression and target
(Havecker et al. 2010). For instance, AGO4 expresses in buds
and roots whereas AGO6 expresses in shoots and roots, partic-
ularly the apical meristem (Havecker et al. 2010). PolIV recruits
CLSY1, SAWADEE HOMEODOMAIN HOMOLOG 1
(SHH1), and DNA Transcription Factor 1 (DTF1), which are
encoded by the plant-specific gene DTF1 to detect histone
H3K9me2 (Law et al. 2013) (Fig. 1).

In addition, RNA-dependent RNA polymerase 2 (RDR2)
associates with RNA-directed DNA methylation 4/12
(RDM4/12) and SR45, which is an enhancer enzyme, to con-
vert ssRNAs to dsRNAs (Zhu et al. 2013; Movahedi et al.
2015a). Then, DCL3 dices dsRNAs to form 24-nucleotide
siRNA duplexes, which recruit HEN1, resulting in the gener-
ation of methylated 3′ overhang siRNA duplexes (Law et al.
2013; Movahedi et al. 2015a). RNA-induced transcriptional
silencing (RITS), which involves AGO4/6/9, then guides
methylated siRNAs onto RNA scaffolds directed by PolV
(Law et al. 2013). The DDR complex, including RNA-
directed DNA methylation 1 (DRD1), Defective Meristem
Silencing 3/11 (DMS3/11), and RDM1, associates with
RITS and PolV and mediates the recruitment of SW13B pro-
tein to the scaffold RNA, which facilitates regulation of the
interactions between siRNAs and scaffold RNA and stabilizes
the nucleosome position (Law et al. 2011). Finally, the RITS
interacts with Kow-domain-containing transcription factor 1
(KTF1) and associates with RDM16 and the splicing factors
STA1 and POZ1 to recruit domain rearranged methyltransfer-
ase 2 (DRM2), leading to DNA methylation at the target loci
and chromatin remodeling (Movahedi et al. 2015a) (Fig. 1).

SiRNAs dependent on endogenous genes

Some endogenous genes, including inverted-repeated se-
quences, at various loci are transcribed to form single-
stranded hairpin precursor RNAs and drive the production of
endoIR-siRNAs (Martinez de Alba et al. 2013). According to

the Dunoyer et al. (2010), two inverted-repeat sequence genes
(IR71 and IR2039) encode hairpin mRNAs, resulting in the
generation of 21–24-nucleotide siRNAs following the recruit-
ment of DCL2/3/4 (Fig. 1). According to the Dunoyer et al.
(2010) endoIR-siRNAs are enable to trigger RNA silencing.

Responsive siRNAs against stresses

Abiotic stress

Borsani et al. (2005), while working on nat-siRNAs in
Arabidopsis, discovered that SR05 and P5CDH proteins play
a key role in protection against oxidative and osmotic stresses
under high-salt conditions. Borsani et al. (2005) also reported
that while SR05 gene is only induced by salt stress, P5CDH
gene is fundamentally expressed. In addition, high salt stress
causes to produce 24-nt nat-siRNAs corresponding to the tran-
scribed mRNA of SR05 gene, leading to target the transcribed
mRNA of P5CDH gene to degrade for producing 21-nt nat-
siRNAs.

Borsani et al. (2005) demonstrated that 21-nt nat-siRNAs
corresponding to P5CDH gene downregulate accumulation of
proline, leading to promote tolerance against salt stress.
Conversely and in the absence of P5CDH activity, PC5 (a toxic
metabolite) and ROS accumulate and damage plant cells. In
contrast, increased levels of PC5 and ROS upregulate the
production of the detoxifying protein SR05, resulting in
resistance to salt stress. Borsani et al. (2005) indicated that nat-
siRNAs, which are derived by SR05 and P5CDH genes, regu-
late ROS production under abiotic stresses. Furthermore, in
wheat seedlings, siRNA007927_0100_2975.1 is downregulated
by abiotic stresses such as cold, drought, and salt. In contrast,
Yao et al. (2010) exhibited that heat downregulated
siRNA080621_1340_0098.1 and cold upregulated it. In addi-
tion, in wheat seedlings, siRNA005047_0654_1904.1 is down-
regulated by drought, heat, and salt stresses and upregulated by
cold, while Yao et al. (2010) presented that drought, heat, and
salt stresses downregulate siRNA002061_0636_3054.1. Ben
Amor et al. (2009) reported that some long non-protein-coding
RNAs (npcRNA) are involved in the responses to biotic and
abiotic stresses. Moreover, salt stress increases the
accumulation of npcRNA536 and npcRNA60, but decreases
the npcRNA82 and npcRNA72. Furini et al. (1997) identified
that in Craterostigma plantagineum, the endoIR-siRNAs de-
pendent on constitutively desiccation tolerant-1 (CDT-1) are
involved inABAdehydration stress and enhance plant tolerance
to desiccation.

Biotic stress

Nat-siRNAATGB2 is an endogenous siRNA involved in the
responses of plants to biotic stresses (Katiyar-Agarwal et al.
2006). Nat-siRNAATGB2 regulates the effector-triggered
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immunity (ETI) protein, which is encoded by the R gene, and
represses the expression of the antisense of pentatricopeptide
repeats protein like gene (PPRL, At4g35850) mRNA, a neg-
ative regulator of RPS2 against Ps pathovar tomato (Pst)
(strain DC3000) (Katiyar-Agarwal et al. 2006). Katiyar-
Agarwal et al. (2006) identified a plant endogenous long
siRNA (lsiRNA) comprising 30–40 nucleotides. These
lsiRNAs were induced by bacterial infection. These authors
also classified AtlsiRNAs according to the infections of Pst
and plant false growth conditions (conditions that direct plants
to damage, such as environmental stresses). In this classifica-
tion, Pst infections strongly induce AtlsiRNA1, but moderate-
ly induce AtlsiRNA2/3/4. Plant false growth conditions also
induce AtlsiRNA2/3/4. Hewezi et al. (2008) demonstrated
that infection by the Heterodera schachtii upregulated the
siRNA41, siRNA46, and siRNA9, but downregulated
siRNA32.

Viral suppressors of RNAi

Definition and mechanism

An important RNAi pathway is dedicated to the control of
exogenous nucleic acids, which originate mostly from plant
viruses. Viral suppressors of RNA silencing (VSRs) are pro-
teins that hamper antiviral RNAi activation in plants, and so
contribute to the subversion of plant immunity (Murray et al.
2013). Indeed, VSRs inhibit RNA silencing (Shen et al.
2015). Many viruses express VSRs or RNA silencing sup-
pressor (RSS) molecules to block the antiviral RNAi pathway
(Calil and Fontes 2017). Baulcombe (2015) reported that the
core of the RNAi mechanism includes the conversion of viral
dsRNAs to siRNAs, catalyzed by DCL proteins. These
siRNAs direct AGO to inhibit RNA translation or RNA rep-
lication. Martinez de Alba et al. (2013) also reported that RNA
polymerase II binds to the promoter of the viral DNA to gen-
erate mRNA from the integrated transgene. Then, RDR pro-
tein generates dsRNA, leading to the formation of 21–22-nu-
cleotide-long siRNA duplexes, which are diced by DCL2/4
and methylated by HEN1 to initiate PTGS. According to the
Martinez de Alba et al. (2013), in plants, viral replication
drives PTGS. Most of these proteins bind to dsRNAs and
siRNA duplexes to suppress the antiviral RNAi pathway
(Merai et al. 2006; Murray et al. 2013). Example VSRs in-
clude NSs of tosposviruses (Bucher et al. 2003), the NS3 of
tenuiviruses (Xiong et al. 2009), the P24 of vitiviruses (Li
et al. 2018), and the joint function of HcPro and P1 from
potyviruses (Lakatos et al. 2006; Valli et al. 2007). In the
functional step, the 2b protein of cucumoviruses binds to
AGO to prevent cleavage of target mRNA by RISC (Zhang
et al. 2006; Cenik and Zamore 2011) and the P0 of
poleroviruses degrades AGO (Baumberger et al. 2007). The

16 k protein of tobraviruses (Martin-Hernandez and
Baulcombe 2008; Bruckner et al. 2017), and P30 of
tobamoviruses (Ding and Voinnet 2007) inhibit signaling
among cells of the immune system. More than 40 types of
VSR are recognized (Murray et al. 2013). Potyviruses have
specific VSRs, including HcPro protein, which produce pro-
teolytic polyproteins to suppress plant RNAi (Rajamäki et al.
2004). The VSRs P19 and 2b are present in tomato bushy
stunt and cucumber mosaic viruses, respectively (Ding and
Voinnet 2007). For example, the 2b protein binds to a 25-
nucleotide dsRNA in cucumber mosaic viruses to inhibit gen-
eral RNA silencing. In addition, this VSR prevents duplex
siRNAs from binding to RISC, thus leading to an increased
concentration of viruses (Ding and Voinnet 2007).

The HcPro protein is a VSR that inhibits the func-
tions of 21-nucleotide siRNAs (Merai et al. 2006;
Murray et al. 2013). HcPro possibly methylates the 3′
end of 21–22-nucleotide siRNAs, which decreases their
stability and leads to their degradation (Ebhardt et al.
2005). Furthermore, the P0 protein is a VSR that har-
bors an F-box motif, which is a target for ubiquitin
ligase SCF E3, interacts with orthologous SKP1,
ubiquitin-involved ligase E3, and inhibits plant RNA
silencing (Mangwende et al. 2009). The P19 protein, a
tomato bushy stunt VSR, binds tightly to 20- or 22-
nucleotide siRNA duplexes, inhibiting their binding to
RISC (Ding and Voinnet 2007).

Conclusions

Complete identification of target genes enhances our un-
derstanding of the activities of small RNAs in plants.
Small RNAs are critical factors in regulatory of genome.
Most small RNAs, which are involved in RNAi pathways,
were identified during genetic diversity and TGS or PTGS
studies. An important remained question is why some
small RNAs can be transported from their cell of origin,
but others cannot? The answer to this question will facil-
itate control of RNAi, miRNA, and siRNA networks.
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