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ABSTRACT
Environmental health is an essential component of quality of life in
modern societies. Foliar dust contains polycyclic aromatic
hydrocarbons (PAHs) that may have harmful effects on human health.
The PAHs concentration of foliar dust is useful to assess environmental
air pollution. Our results indicate that: (1) the highest levels of PAHs
were distributed in urban areas, with a mean of 3430.23 ng¢g¡1, lower
mean concentrations were found in suburban (2282.12 ng¢g¡1), and
rural areas (1671.06 ng¢g¡1). (2) Diagnostic ratios and principal
component analysis were used to identify the sources of PAHs: Gasoline
vehicle traffic emissions were the predominant source in urban areas,
along with coal and coke combustion. In suburban areas, the main
sources were petroleum combustion (especially liquid fossil fuels) and
coal combustion. Coal and wood combustion were the primary source
of PAHs in foliar dust in rural areas. (3) The incremental lifetime cancer
risk (ILCR), estimated based on the results of this study indicate that
urban residents were potentially exposed to high cancer risk via both
dust ingestion and dermal contact. We conclude that urbanization has
significant effects on the PAH concentrations of foliar dust, illustrating
the importance of trees in improving air quality in urban areas.
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Introduction

Dust is a sink and source of pollutants, especially atmospheric particles, and can provide use-
ful information about the aggregation of specific particulate materials from local pollution
sources over a long period of time (Xu et al. 2014; Xu et al. 2016; Adachi et al. 2005). Rapid
urbanization has resulted in the emission of several pollutants in urban areas (Ahmed et al.
2006), which have placed a heavy burden on the local environment. One group of contami-
nants in dust are polycyclic aromatic hydrocarbons (PAHs), which have become a matter of
major concern (Ravindra et al. 2008). They are released from both natural and anthropogenic
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sources (vehicle emissions, coal and fossil fuel combustion, chemical, oil spill coal tar, indus-
trial processing, straw and firewood burning, etc.) (Kang et al. 2010; Pongpiachan et al. 2015).
As a set of Persistent Organic Pollutants (POPs), PAHs are typical aggregate pollutants that
are toxic and have long-term persistence in the environment (Song et al. 2015).

PAHs produced by human activities have been detected in various environmental media,
such as atmosphere, soil, urban surface dust, sediment and precipitation (He et al. 2014),
and house dust (inhalation and ingestion), which has received a great deal of attention, and
people spend > 90% of their times in house environments, leading to investigations of these
environments for PAHs (Mercier et al. 2011. Yang et al. 2015). It has been discussed in the
literature that vegetation plays a key role in the cycling of PAHs in terrestrial ecosystems
(Nicola et al. 2017; Li et al. 2014; Bakker et al. 2001; Howsam et al. 2010). Previous research
has reported that vegetation may alleviate approximately 41% of the total PAHs emission in
urban areas and 4% in rural areas (Wagrowski et al. 1996). Foliar represents an exchange
surface between air and vegetation, and is always taken into account when modelling PAH
cycling (Behrendt et al. 1993; Priemer et al. 2002). Gaseous PAHs easily pass into the stoma-
tal pathway or diffuse into the cuticle and further inside the leaf (Bakker et al. 2001), whereas
particle-bound PAHs are deposited on the leaf surface (Belis et al. 2011). Urban fugitive dust
can accumulate on the leaf surface to form foliar dust. However, interactions of environment
factors can result in the complicated dynamics of dust-retention by leaves. Hence, foliar dust
deserves particular attention. Given that children engage in frequent hand-to-mouth activi-
ties, they are likely to be exposed to foliar dust (Shi et al. 2011). Therefore, a better under-
standing of the accumulation of PAHs accumulation in leaves could effectively help identify
emissions sources and estimate the contamination levels of PAHs in the atmosphere (Marsili
et al. 2001; Librando et al. 2002; Barber et al. 2003).

Several previous studies quantitatively analyzed the element (Ram et al. 2014; Simon et al.
2014; Simon et al. 2011) and heavy metal concentrations of foliar dust (Yin et al. 2011; Qiu
et al. 2009; Bhattacharya et al. 2013). However, the existing literature provides limited results
of the comprehensive assessment of the levels, source, and cancer risk of PAHs in foliar dust.
Therefore, PAH emissions have the potential to affect human health, especially when aggre-
gated in human environments located in areas of rapid industrialization and urbanization,
such as Nanjing (Xu et al. 2016). This is attributed to the fact that urbanization substantially
affects the PAH distribution (Wang et al. 2015). Thus, it is critical to select an appropriate
technique that can cost-effectively provide quantitative measurements of the PAH pollution
levels. In this study, the specific objectives were: (1) to measure the concentrations of PAHs
of urban to rural foliar dust in Nanjing; (2) to identify of various sources of PAHs by diag-
nostic ratios and principal component analysis (PCA); (3) to evaluate the risk of human
exposure to PAHs in Nanjing foliar dust.

Methods and materials

Study area

As an eastern city located in the Yangtze Delta Region (YDR), with rapid urbanization and
industrialization as well as rapidly increases levels of traffic and population density, Nanjing is
a core economic development zone in China, and has become a complex industrial city, and
process electronics, automobiles, and chemicals (Xu et al. 2013; Su et al. 2012; Guo et al. 2003).

HUMAN AND ECOLOGICAL RISK ASSESSMENT 73



The current study was carried out in the city of Nanjing, which is characterized by high
levels of human activities. The study site was an area of afforestation in the city Centre, as
well as into urban, suburban, and rural areas. The sampling sites were specific classified into
urban areas (31�5200»32�1400N 118�3400»119�1400E), which included eight districts (Xuanwu,
Baixia, Gulou, Qinhuai, Jianye, Xiaguan, Yuhuatai, and Qixia), with high-density population
and heavy traffic around suburban areas (31�3700»32�3600N 118�2100»119�0600E), which
included three districts (Pukou, Liuhe, and Jiangning) with lower traffic and other anthropo-
genic activities, and rural areas (31�1300»31�4700N 118�4100»119�1300E), which were far from
city Centre, where the low density of residents and traffic lead to low pressure in this area
(Lishui and Gaochun) (Figure 1).

Sample collection

The tree species selected for this study included Firmiana simplex, Osmanthus fragrans
Lours, Photinia serrulata Lindl, and Symplocos sumuntia, which have been widely used as

Figure 1. (A) Study areas and sampling sites of Firmiana simplex leaves. (B) Study areas and sampling sites
of Osmanthus fragrans Lours leaves. (C) Study areas and sampling sites of Photinia serrulata Lindl leaves.
(D) Study areas and sampling sites of Symplocos sumuntia leaves.
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city-greening tree species in the south of China. Samples were collected in August 2015 after
a period of heavy rain and strong winds. For each tree species in each area, five trees were
selected for sampling. None of the tree leaf (100 pieces) samples was suffering from obvious
pests or disease. They were collected from the inner and outer canopy of east, south, west,
and north facing directions at a height of approximately 1.5»4.0 m above ground level with
a pruner. All sample leaves were carefully collected to minimize touching of the leaf surface
and were kept in a cool box (¡20�C) during transport and in the laboratory prior to analysis.

Sample preparation

The leaf samples were washed using Milli-Q water (250 mL, Milliporem Bedford, MA, USA)
in an ultrasonic cleaner (HS-1010A, Shenzhen, China) for 10 min (Baranyai et al. 2015).
The dust containing the suspension was filtered through a 150-mm sieve. The procedure was
repeated with 50 mL of Milli-Q water, which was filtered and added to the samples. This
300 mL of dust containing suspension was dried with a vacuum freeze-drier (Labconco,
Kansas City, MO, USA) for 5 d at ¡83�C to a constant weight and then stored at ¡20�C
until further extraction.

Chemical and materials

A composite standard solution of 16 PAHs was purchased from Sigma-Aldrich (Dr, Ger-
many), and included naphthalene (Nap), acenaphthylene (Acp), acenaphthene (Acp), fluo-
rene (Fl), phenanthrene (Phe), anthracene (Ant), fluoranthene (Flu), pyrene (Pyr), benzo(a)
anthracene (BaA), chrysene (Chr), benzo(b)fluoranthene (BbF), enzo(k)fluoranthene (BkF),
benzo(a)pyrene (BaP), dibenzo(a, h)anthracene (DBA), benzo(g, h, i)perylene (BghiP), and
indeno(1,2,3-cd)-pyrene (IcdP). In this study, the extracts were analyzed for PAHs using a
high performance liquid chromatograph (HPLC, Shimadzu, LC-20A), with the 4.6 mm (ID)
£250 mm (L) column and 310 UV detector at 260 nm. A mixture of acetonitrile (ACN) and
water was used as the mobile phase with solvent gradient method and a flow rate of
1.0 mL¢min¡1 at 35�C.

PAHs extraction

All PAHs were extracted from dust and leaves (0.5 g) with a 30-mL mixture of hexane and
dichloromethane (v/v D 1:1) using an ultrasonic bath for 1.5 h. This step was repeated three
times. The solvent fractions were concentrated using a vacuum rotary evaporator and sol-
vent-exchanged to hexane. The concentrated extract was cleaned via a silica column chroma-
tography (10 mm (ID) £ 350 mm (L), 10 g of silica gel, and 20 mm length of anhydrous
sodium sulfate). Then, the aliphatic fraction was abandoned by washing it with hexane
(25 mL), whereas the PAHs fraction was washed with 40 mL of dichlomethane after extrac-
tion, followed by filtration through a 0.22-mm fiberglass membrane and reconcentrated with
gentle stream of nitrogen to exactly 1 mL through a blowing process at 25�C. The concen-
trated extracts were then analyzed for PAHs with a high performance liquid chromatograph
(LC-20AT; Shimadzu, Kyoto, Japan).
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Quality assurance and quality control

All analytical procedures were monitored using strict quality assurance and control meas-
ures. During sample analyses, matrix-unpolluted blanks (PAHs-free) were analyzed every
five samples. Duplicates were also run every 10 samples and the samples were reanalyzed if
the difference exceeded §15%. The 16 PAHs were quantified using external standard meth-
ods. Experiments to assess foliar dust recovery were conducted by spiking known concentra-
tion standards (200 ng¢g¡1). The foliar dust average recoveries based on matrix-polluted
samples, ranged from 78.31% for Nap and 78.32%»102.45% for the remaining 15 PAHs.

Risk assessment of PAHs

The exposure risk from environmental PAHs was quantified using the incremental lifetime
cancer risk (ILCR) based on the U.S. EPA standard models (US EPA 2014; Wang et al. 2011;
Peng et al. 2011; Chen et al. 2006). The population of Nanjing area was divided into six
groups according to age and gender: children (2»10 years) male and female, adolescents
(11»17 years) male and female, and adults (18»70 years), male and female. The ILCRs in
terms of ingestion, dermal contact, and inhalation after exposure to foliar dust-borne PAHs
in urbanization areas of Nanjing were calculated as follows:

ILCRsIngestionDCS£.CSFIngestion£ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW 6 703

p Þ£IRsoil£EF£ED/6 .BW£AT£106/ð

ILCRsDermal DCS£.CSFDermal£
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW 6 703

p
Þ£SA£AF£ABS£EF£ED/6 .BW£AT£PEF/

�

ILCRsInhalation DCS£.CSFInhalation£
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BW 6 703

p
Þ£IRair£EF£ED/6 .BW£AT£PEF/

�

ILCRsD ILCRSIngastion C ILCRsDermal C ILCRsInhalation

where CS is the sum of the converted PAH levels based on the toxic equivalents of BaP using
the toxic equivalency factor (TEF). CSF is the carcinogenic slope factor (mg¢kg¡1¢day¡1).
BW is body weight (kg), AT is average life span (years), EF is exposure frequency (day-
¢year¡1), ED is exposure duration (years), (for children: ED D 9; for adolescents: ED D 7;
for adults: ED D 70) IRInhalation is the inhalation rate (m3¢day¡1), IRIngestion is the soil intake
rate (mg¢day¡1), SA is the dermal surface exposure (cm2), AF is the dermal adherence factor
(mg¢cm¡2¢h¡1), ABS is the dermal adsorption fraction, and PEF is the particle emission fac-
tor (m3¢kg¡1). PEF is the particle emission factor (m3¢kg¡1); and CSFIngestion, CSFDermal, and
CSFInhalation of BaP were addressed as 7.3, 25, and 3.85 (mg¢kg¡1¢day¡1), respectively, as
determined by the cancer-causing ability of BaP.

Results and discussion

Levels and distribution of PAHs in foliar dust

The descriptive statistics of the total PAHs levels (
P

16PAHs) and seven carcinogenic PAHs
(
P

7cPAHs) (BaA, Chr, BbF, BkF, BaP, IcdP, and DBA) in foliar dust from urban, suburban
and rural areas from Nanjing are given in Table 1. In urban foliar dust, the sum of the 16 pri-
ority PAHs (

P
16PAHs) varied from 139.82 to 13294.84 ng¢g¡1, with a mean of
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3897.60 ng¢g¡1. The mass concentrations of
P

7cPAHs ranged from 70.44 to 4341.53 ng¢g¡1,
with a mean of 1261.94 ng¢g¡1, which accounted for 12.09 to 73.86% of the

P
16PAHs, with

a mean of 34.01%. In suburban areas, the total concentrations of PAHs ranged from 101.91
to 8107.16 ng¢g¡1, with a mean value of 2282.12 ng¢g¡1. The mass concentrations ofP

7cPAHs ranged from 23.66 to 3503.77 ng¢g¡1, with a mean of 911.81 ng¢g¡1, which
accounted for 4.17% to 70.82% of

P
16PAHs, with a mean of 38.54%. In rural foliar dust, the

concentrations of
P

16PAHs ranged from 18.83 to 5479.95 ng¢g¡1 in rural areas, with a
mean value of 1671.06 ng¢g¡1. The mass concentrations of

P
7cPAHs ranged from 18.83 to

2298.16 ng¢g¡1, with a mean of 665.13 ng¢g¡1, which accounted for 9.59% to 54.76% ofP
16PAHs.
A wide range of

P
7cPAHs and

P
16PAHs concentrations were observed in Nanjing foliar

dust, and decreased in the following order: urban > suburban > rural areas. The mean level
of

P
16PAHs in this study was relatively higher than the mean levels in the United Kingdom

(0.002 mg¢kg¡1), Norway (0.0069 mg¢kg¡1), Canada (0.0011 mg¢kg¡1), and Australia
(0.0033 mg¢kg¡1) (Hassanien and Adbel-Latif. 2008). However, the results were lower than
the urban street dust levels in Guangzhou (4800 ng¢g¡1, Wang et al. 2011); Taiwan
(65.8 mg¢kg¡1 in traffic site); Birmingham, UK (12.56¡93.70 mg¢kg¡1); and Ulsan, Korea
(11.8¡245 mg¢kg-1, Fang et al. 2004; Dong and Lee 2009). By contrast, the PAHs concentra-
tion of street dust, and the high contamination level of PAHs in foliar dust may be attributed
to size-fractionated particles. Ram et al (2014) found that foliar dust from tree leaves consists
of fine particles smaller than 30 mm, but street dust was composed of particles of different
sizes, mainly particles larger than 30 mm. The intense urban traffic activities had a great
impact on the environment, and fine and ultra-fine particles are mainly derived from vehicu-
lar emissions. As there are large numbers of cars in the traffic areas in Nanjing, fine and
ultrafine particles that are produced adhere to the surface of leaves, and contribute to the
high content of PAHs in foliar dust at urban sites, which suggests that adjacent

Table 1. Concentrations of PAHs in foliar dust from different areas in Nanjing (ng¢g¡1).

Urban areas Suburban areas Rural areas

Compounds Min Max Mean SD Min Max Mean SD Min Max Mean SD

Nap 0.84 128.76 29.96 30.81 0.52 35.98 9.21 9.22 1.45 278.57 67.97 68.58
Acy 1.57 267.42 46.01 55.61 1.78 68.26 16.54 16.18 1.75 57.26 16.65 14.92
Ace 0.46 67.42 16.17 17.65 0.71 78.35 15.62 17.32 2.31 426.26 67.13 80.78
Phe 5.56 2167.74 430.34 484.60 4.26 874.51 218.83 245.74 3.05 285.51 71.69 74.07
Ant 0.17 156.65 26.15 31.15 2.55 110.63 27.34 28.02 1.03 95.35 16.83 17.61
Fl 0.53 88.09 19.11 20.48 0.49 202.67 23.59 38.24 0.26 138.53 20.91 26.56
Flu 5.34 1678.74 474.84 470.64 3.56 1643.24 416.90 399.14 2.56 1342.51 392.52 393.34
Pyr 2.34 3035.72 740.23 780.32 3.89 1322.52 402.36 388.22 1.94 983.51 272.34 257.47
BaA 1.56 287.98 63.44 63.33 0.52 543.14 84.00 109.54 2.45 328.52 97.72 95.95
Chr 5.41 1963.51 423.83 449.77 3.52 942.51 209.98 236.25 3.31 897.36 212.60 237.41
BbF 3.52 745.52 151.92 177.47 2.85 582.25 126.73 151.22 2.94 414.36 100.32 113.16
BkF 2.42 452.44 96.77 109.21 1.74 187.64 48.02 42.26 1.01 125.43 26.39 27.76
BaP 4.58 984.34 249.96 254.60 3.51 725.60 181.99 189.56 1.78 436.76 103.76 106.52
IcdP 3.75 3789.74 852.85 799.45 2.86 962.51 224.87 246.90 3.03 339.51 93.01 85.93
DBA 1.67 244.73 39.25 44.30 1.05 124.52 36.22 33.43 1.61 157.52 31.34 34.71
BghiP 2.89 1278.52 326.76 278.26 3.85 890.45 239.94 254.47 1.03 367.81 79.89 82.82P

7cPAHs 70.44 4341.53 1261.94 1170.13 23.66 3503.77 911.81 885.67 18.83 2298.16 665.13 600.41P
16PAHs 139.82 13294.84 3897.60 3430.23 101.91 8107.16 2282.12 2056.90 41.46 5479.95 1671.06 1473.00

Notes: SD denotes standard deviation; ND denotes not detected (below the detection limit).



anthropogenic actives had a stronger effect on the pollution characteristics than land use
types, our result agree with the conclusions of (Li et al. 2017).

Composition profiles in foliar dust

The 16 PAH compounds were divided into five groups: 2-ring, 3-ring, 4-ring, 5-ring, and
6-ring PAHs. In urban area, foliar dust PAHs with 4 rings and 5 rings were the primary
components (Figure 2), and accounted for 43.68% and 34.68% of the total PAHs, on average,
followed by the 3-, 6-, and 2-ring PAHs at 13.80%, 7.08%, and 0.77%, respectively. The high-
molecular-weight (HMW) PAHs (4»6 rings), ranged from 54.93% to 95.69 %, with a mean
of 84.28%, and were the dominant PAH compounds in all of the foliar dust samples. IcdP
was observed to have the highest concentration (852.85 ng¢g¡1), followed by the concentra-
tions of Pyr, Flu, Phe, and Chr, with the concentrations of 740.23, 474.84, 430.34, and
423.83 ng¢g¡1, respectively. The concentrations of Nap, Ace, and Acy in foliar dust were low-
est due to their solubility, vapor pressure, and input. In terms of the relative compositions of
the foliar dust in suburban areas, 4-ring and 5-ring PAHs predominated at 58.36% and
19.36%, respectively, followed by 3-, 6-, and 2-ring PAHs at 13.23%, 12.10%, and 0.40%,
respectively The HMW PAHs, ranged from 28.99 to 98.63%, with a mean of 82.68%, and
were the dominant PAH compounds in all of the foliar dust samples. Flu was observed to
have the highest concentration (416.90 ng¢g¡1), followed by Pyr, BghiP, IcdP, Chr with con-
centrations of 402.36, 239.94, 224.87, and 209.98 ng¢g¡1, respectively. In the rural area, the
relative composition of the ring PAHs ranked from high to low prevalence as follows: 4-, 5-,
3-, 6-, and 2-ring PAHs, at 58.36%, 17.36%, 11.56%, 6.66%, and 4.07%, respectively. The
HMW PAHs, ranged from 13.42 % to 92.69%, with a mean of 79.32%, and were the domi-
nant PAH compounds in all of the foliar dust samples. Flu was observed to have the highest

Figure 2. The percentage of PAHs with different rings of Nanjing area.
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concentration (392.52 ng¢g¡1), followed by Pyr, Chr, BaP, and BbF with concentrations of
272.34, 212.60, 103.76, and 100.32 ng¢g¡1, respectively.

In terms of the composition profiles, HMW PAHs were the predominant PAHs in foliar
dust from urban, suburban, and rural areas, which was similar to previously reported find-
ings. HMW PAHs contributed 62%–94% of the

P
16PAHs mass in the surface dust samples

in Guangzhou (Wang et al. 2011). Lee et al (2009) reported that 4-rings PAHs accounted for
the highest percentage in Ulsan, South Korea. As for the individual PAH compositions, the
PAH profile was similar to the results found in street dust in Guangzhou (Wang et al. 2011),
and Shanghai (Zheng et al. 2016), and was similar to those of PAHs associated with fine par-
ticulate matters in Nanjing (He et al. 2014). Indeed, LMW PAHs were dominant in the gas
phase as reported previously, and HMW PAHs were exclusively present in the particulate
phase (Possanzini et al. 2004; Alfani et al. 2005), demonstrating how foliar dust is an impor-
tant source of HMW PAHs, which is reported to be more toxic and persistent in the
environment.

Source identification of foliar dust PAHs

Diagnostic ratios analysis
Anthropogenic PAHs are mainly derived from incomplete combustion of fossil fuel or bio-
mass, and leakage of oil or petroleum products (Boonyatumanond et al. 2007). Diagnostic
ratios are the concentration ratios of specific pairs of PAHs, are generally used as tool to
identify the origins of PAHs, such as Ant/(Ant C Phe), Flu/(Flu C Pyr), BaA/(BaA C Chr),
and IcdP/(IcdPCBghiP) which were chosen for investigation in this study (Mannino and
Orecchio. 2008; Yunker et al. 2002). The ratio of Ant/(Ant C Phe) was < 0.1 indicating a
petroleum source, whereas values > 0.1, indicating a pyrogenic (Boonyatumanond et al.
2007). Meanwhile, Flu/(FluCPyr) < 0.4 indicates a petrogenic/unburned petroleum,
between 0.4 and 0.5 implies fossil fuel combustion, and a ratio of > 0.5 is the characteristic
of biomass orcoal combustion (Boonyatumanond et al. 2007; De et al. 2009). Ratios of BaA/
(BaACChr) < 0.2 indicate petrogenic source, between 0.2 and 0.35 indicate petroleum com-
bustion, and > 0.35 indicates biomass or coal combustion (Boonyatumanond et al. 2007;

Figure 3. Mean of individual PAHs in foliar dust from different functional areas in Nanjing.
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Simcik et al. 1999). IcdP/(IcdP CBghiP) < 0.2, indicates petrogenic and petroleum sources,
and IcdP/(IcdPCBghiP) between 0.2 and 0.5 indicates petroleum combustion, IcdP /
(IcdPCBghiP) > 0.5 indicates contribution of biomass or coal combustion (Ravindra et al.
2008; Tobiszewski et al. 2012; Yunkerr et al. 1999).

As shown in Figure 4A, in urban foliar dust the ratios of Ant/(AntCPhe) were generally
lower than 0.1, whereas the ratios of Flu / (FluCPyr) were lower than 0.5, suggesting a mixed
source of petroleum and liquid fossil fuel combustion. The ratios of BaA/(BaACChr),
IcdP/(IcdPCBghiP) with averages of 0.19 and 0.22, which indicated the PAHs come
from petroleum combustion (liquid fossil fuel, vehicle, and crude oil combustion). Further-
more, the result indicative of vehicular traffic emissions as the main sources of PAHs
(Yunkerr et al. 1999). In suburban areas (Figure 4B), Ant/(Ant C Phe) and Flu/(FluCPyr),

Figure 4. Cross plot for the isomeric ratios of Ant/(AntCPhe) vs. Flu/(FluCPyr), and BaA/(BaACChr) vs.
IcdP/(IcdPCBghiP) in foliar dust. (A) Urban area, (B) suburban area, and (C) rural area.
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the averages were 0.18 and 0.50, respectively This result indicated that pyrogenic and liquid
fossil fuel combustion were the main sources of PAHs. The value of BaA/(BaACChr), IcdP/
(IcdPCBghiP) with means of 0.34 and 0.47, strongly indicates the contribution of petroleum
combustion. In rural areas (Figure 4C), the ratios of Ant/(Ant C Phe) and Flu/(FluCPyr)
were 0.28 and 0.57, respectively. This result suggests a mixed source of pyrogenic, biomass
and coal combustion. The value of BaA/(BaACChr) > 0.35 (0.40) and IcdP/(IcdPCBghiP)
> 0.5 (0.55), it strongly indicate the contribution of biomass, coal combustion.

Sources of PAHs with PCA
To improve the accuracy of the emissions source identification, the PCA method was applied.
The results are presented in Figure 5. Where two principal components, probably representing
two source categories, were identified. In urban areas (Figure 5a), the first factor (62.43% of
variance) had high loading values of Pyr, BaP, Flu, and especially BghiP, which occurred as a
result of gasoline vehicle emissions (Hong et al. 2007; Ravindra et al. 2008) and the burning

Figure 5. Principle component analysis of PAHs for urban area (A), suburban area (B), and rural area (C).
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of coke combustion (Duval e al. 1981). The second factor, comprising 9.88% of the total vari-
ance, was high loading of Nap, Acy, Ace, Chr, and BbF, which were identified as markers of
traffic tunnels (Nielsen et al. 1996). Hence, it could be suggested that vehicle emission and
traffic tunnel suggested to be the main sources of PAHs in foliar dust in urban areas.

In suburban areas, Factor 1 explained 62.59% of the total PAH variance and was domi-
nated by Phe, Ant, Flu, Pyr, Chr, BbF, BaP, IcdP, DBA, and BghiP (Figure 5b), which repre-
sentative of vehicle emissions (Kong et al. 2010), whereas Ant and BbF are indicators of coal
combustion (Kong et al. 2010). Factor 2 explained 10.81% of the total PAHs variances and
was mainly dominated by Acy, Fl, and BaA. Acy is an indicator of industrial production
(Wu et al. 2014), whereas Fl and BaA are coal combustion markers (Harrison et al. 1996; Li
et al. 2003). Hence, the results from PCA revealed that vehicle emissions and coal combus-
tion were probably the main sources of PAHs in foliar dust of Nanjing’s suburban areas.

In rural areas, Factor 1 explained approximately 63.74% of the variance, with high load-
ings of Flu, Pyr, BaA, Chr, BbF, IcdP, and DBA (Figure 5c). Among these, DBA, Chr, and
Flu, are indicators of vehicle emissions (Hong et al. 2007; Kong et al. 2010), whereas Pyr,
Chr, and Flu, are indicators of coal and wood combustion (Wu et al. 2014). Furthermore,
Flu is also an indicator of fossil fuel combustion and industrial processes, such as coke pro-
duction (Lai et al. 2013). Factor 2 explained 10.79% of the total PAH variance and was dom-
inated by Nap, Ace, Ant, and BaP. Among these, Ace, and BaP are indicators of vehicle
emissions, whereas Nap indicates wood combustion (Kong et al. 2010). Furthermore, BaP is
regarded to be a specific marker of coal combustion (Khalili et al. 1995). Hence, it suggested
that automobile exhaust, coal, and wood combustion of PAHs were probably the main sour-
ces of PAHs in foliar dust in rural area.

Health risk assessment of PAHs in foliar dust

The toxic equivalency factors of BaP (BaPeq) were provided by Nisbet and LaGoy (1992).
BaP is the only carcinogenic PAH homologue with sufficient toxicity data available. There-
fore, this compound was used to evaluate the level of PAH contamination in foliar dust
along an urban-rural gradient in Nanjing. A toxicity equivalent factor (TEF) was used to
determine the carcinogenicity of the PAHs from foliar dust (Table 2). In this study, theP

16TEQs concentration was in the range of 9.17»1344.29 ng¢g¡1, with a mean of
358.89 ng¢g¡1 in urban areas. The mean concentration of

P
7cTEQs was 348.34 ng¢g¡1,

which was close to that of
P

16TEQs; these factors were the major contributors (97.06%) to
the total BaPeq in dust samples. The contribution of PAHs to total BaPeq decreased in the fol-
lowing order: BaP > DBA > IcdP > BbF > BkF > BaA > Chr. In suburban area, the BaPeq
concentration of

P
16PAHs in the foliar dust samples ranged from 7.24»1021.50 ng¢g¡1,

with a mean value of 272.45 ng¢g¡1. The mean concentration of
P

7cTEQs was 268.67 ng¢g¡1,
which contribution 98.61% to the total BaPeq. The contribution of PAHs to total BaPeq
decreased as follows: BaP > DBA > IcdP > BbF > BaA > BkF > Chr. In rural areas, the
BaPeq concentration of

P
16PAHs ranged from 5.46»604.64 ng¢g¡1, with a mean value of

170.84 ng¢g¡1. According to Canadian soil quality soil quality guidelines for the protection
of environmental and human health (CCME 2010), the safe value of BaP in soil was
700 ng¢g¡1 (Liu et al. 2010). In urban areas, 87.5% of the dust samples showed concentra-
tions below the safe value of 700 ng¢g¡1, indicating a generally low risk from PAHs in urban
foliar dust in Nanjing. However, five foliar dust samples showed concentrations above this
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safe value. These sites were mainly contaminated as a result of industrial and vehicle emis-
sions, with the highest concentration recorded at 1344.29 ng¢g¡1. In suburban areas, only
three samples exhibited concentrations above the safe value of 700 ng¢g¡1. This site, one of
Nanjing’s leading industries, was the coal-based petrochemical industry, and was a primary
source of PAHs pollution in Nanjing suburban areas. In rural areas, all of the dust samples
were below the safe value.

Depending on TEF and the Carcinogenic slope factor (CSF), we estimated the risks
incurred from inhalation, ingestion, and dermal contact. The results suggested that the can-
cer risk via ingestion and dermal contact ranged from 10¡7 to 10¡6 in all dust samples,
which were 104 to 105 times higher than the levels via inhalation (10¡11) (Table 3). There-
fore, oral ingestion and dermal contact were considered to be the main exposure routes of
PAHs in foliar dust, inhalation of suspended particles through the mouth and nose was neg-
ligible compared with the other two routes. This finding was similar to that of ILCRs found
for PAHs exposures in other studies, such as the urban street dust of Guangzhou (Wang
et al. 2011), the Isfahan metropolis of Iran (Soltani et al. 2015), and the urban soil of Beijing,
China (Peng et al. 2011).

As shown in Table 3, the value of ILCRs was the highest in urban areas, indicating a high
potential carcinogenic risk for urban residents. The risk value of direct ingestion for children
was slightly higher than the adolescences and adults. Children were the subpopulation that
was most sensitive to foliar dust, because of their hand-to-mouth activity, whereby contami-
nated dust can be easily ingested (Meza-Figueroa et al. 2007). Furthermore, given the lower
body weight of children, their PAH intake (mg/kg-body weight/day) was also believed to be
greater than that of adults (Wang et al. 2011). Thus, the health risk for a child exposed to
urban foliar dust PAHs was thought to be greater than that of an adult. Compared to chil-
dren, dermal contact appeared to be the predominant exposure route for adults, and the
value was slightly higher than for children and adolescents.

An ILCR between 10¡6 and 10¡4 indicated a potential risk, where virtual safety was
denoted with an ILCR of 10¡6 or less and a potentially high risk was estimated by an ILCR

Table 2. Toxic equivalent concentration (BaPeq) (ng¢g¡1) of PAHs in foliar dust in Nanjing.

Urban TEQ Suburban TEQ Rural TEQ

Compounds TEFs Min Max Mean Min Max Mean Min Max Mean

Nap 0.001 0.00 0.13 0.03 0.00 0.04 0.01 0.00 0.28 0.07
Acy 0.001 0.00 0.27 0.05 0.00 0.07 0.02 0.00 0.06 0.02
Ace 0.001 0.00 0.07 0.02 0.00 0.08 0.02 0.00 0.43 0.07
Phe 0.001 0.01 2.17 0.43 0.00 0.87 0.22 0.00 0.29 0.07
Ant 0.010 0.00 1.57 0.26 0.03 1.11 0.27 0.01 0.95 0.17
Fl 0.001 0.00 0.09 0.02 0.00 0.20 0.02 0.00 0.14 0.02
Flu 0.001 0.01 1.68 0.47 0.00 1.64 0.42 0.00 1.34 0.39
Pyr 0.001 0.00 3.04 0.74 0.00 1.32 0.40 0.00 0.98 0.27
BaA 0.100 0.16 28.80 6.34 0.05 54.31 8.40 0.25 32.85 9.77
Chr 0.010 0.05 19.64 4.24 0.04 9.43 2.10 0.03 8.97 2.13
BbF 0.100 0.35 74.55 15.19 0.29 58.23 12.67 0.29 41.44 10.03
BkF 0.100 0.24 45.24 9.68 0.17 18.76 4.80 0.10 12.54 2.64
BaP 1.000 4.58 984.34 249.96 3.51 725.60 181.99 1.78 436.76 103.76
IcdP 0.100 0.29 127.85 23.68 0.29 96.25 22.49 0.30 33.95 9.30
DBA 1.000 1.67 244.73 39.25 1.05 124.52 36.22 1.61 157.52 31.34
BghiP 0.010 0.04 37.90 8.53 0.04 8.90 2.40 0.01 3.68 0.80P

7cTEQs — 9.08 1312.72 348.34 6.40 1007.93 268.67 5.42 598.39 168.97P
16TEQs — 9.17 1344.29 358.89 7.24 1021.50 272.45 5.46 604.64 170.84
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of greater than 10¡4 (Chen et al. 2006). The results indicate that the risk due to foliar dust
PAHs exposure was pervasive for urban residents in Nanjing. The highest ILCR was found
in the Confucius Temple, followed by the Central Business District-Xinjiekou. Because these
areas have large populations with heavy traffic, large amounts of PAHs are generated. This
result was similar to the influence of local PAHs releases (regional transport and local emis-
sions) from fine particulate matter in Nanjing (He et al. 2014). The highest concentrations
of ILCRs occurred in some industrial zones in the suburban area, such as from the Jingling
Petrochemical Company, whereas the lowest occurred in rural areas, however, some sensi-
tive land uses, such as residential areas near the traffic zone, should not be overlooked. Chil-
dren often play in these places.

Some studies showed that ultrafine particles (< 2.5 mm) in dense urban areas cause harm-
ful effects to human health (Power and Willis. 2004; Pope et al. 2002), which may be attrib-
uted to higher ILCRs in urban areas. Our results are consistent with this conclusion. Several
studies have further quantified the small size fractions (< 10 mm), which could easily adhere
to foliage (Manes et al. 2016; Nowak et al. 2006; Ottel�e et al. 2010; Sternberg et al. 2010).
This suggests that the fine PM in foliar dust requires more attention to minimize the overall
risk posed by PAHs, and select effective trees to capture fine PM associated with PAHs.

Conclusions

This is the first investigation of foliar dust contamination by PAHs from urban to rural
foliar dust in Nanjing were analysis. In this study areas, urban, suburban, and rural
areas were contaminated by PAHs with concentrations of 3430.23, 2282.12, and
1671.06 ng¢g¡1, respectively. The most abundant rings were 4-ring PAHs both found in
urban, suburban, and rural areas. Two source identification methods showed the same
outcomes: Gasoline vehicle traffic emission were the predominant source of PAHs in
urban areas, along with coal and coke combustion. In suburban areas, the main source
of PAHs was petroleum combustion (especially liquid fossil fuels) and coal combustion.
Coal and wood combustion, burnt biomass were the primary sources of PAHs in foliar
dust in rural areas. The ILCR results indicated that foliar dust contaminated with
PAHs pose a higher risk in urban areas than in suburban and rural areas, and adults
were likely to be exposed to higher levels of PAHs than that of children. This study
reveals that the process of urbanization has a significant effect on the production of
PAHs. In addition, it is necessary to pay more attention to the accumulation of PAHs
associated with urbanization of Nanjing.
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