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L1-Norm Distance Minimization-Based Fast Robust Twin
Support Vector k-Plane Clustering
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Abstract— Twin support vector clustering (TWSVC) is a recently
proposed powerful k-plane clustering method. It, however, is prone to
outliers due to the utilization of squared L2-norm distance. Besides,
TWSVC is computationally expensive, attributing to the need of solving
a series of constrained quadratic programming problems (CQPPs) in
learning each clustering plane. To address these problems, this brief
first develops a new k-plane clustering method called L1-norm distance
minimization-based robust TWSVC by using robust L1-norm distance.
To achieve this objective, we propose a novel iterative algorithm.
In each iteration of the algorithm, one CQPP is solved. To speed up
the computation of TWSVC and simultaneously inherit the merit of
robustness, we further propose Fast RTWSVC and design an effective
iterative algorithm to optimize it. Only a system of linear equations
needs to be computed in each iteration. These characteristics make our
methods more powerful and efficient than TWSVC. We also conduct some
insightful analysis on the existence of local minimum and the convergence
of the proposed algorithms. Theoretical insights and effectiveness of our
methods are further supported by promising experimental results.

Index Terms— Iterative algorithm, k-plane clustering,
L1-norm distance, linear equations, twin support vector
clustering (TWSVC).

I. INTRODUCTION

Clustering, as one of the fundamental topics in machine learn-
ing and pattern classification, has widely been applied to various
areas, such as text mining, web analysis, and bioinformatics [1]–[3].
The target of clustering is to group similar samples into the
same cluster while dissimilar samples into different clusters, such
that the meaningful structures of data are well discovered [4].
There are many clustering techniques in the literature. For
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example, [5] and [6] considered kernel-based clustering, [7] and [9]
used max-margin constraint in the clustering, and [9]–[11] proposed
point-based central clustering techniques, e.g., k-mean, k-median, and
fuzzy c-mean.

In recent years, there has been increasing interest in k-plane clus-
tering. k-plane clustering changes the entity of the center from being
a point to that of being a plane [12]. kPC [12], proximal plane clus-
tering (PPC) [13], and twin support vector clustering (TWSVC) [14]
are three typical k-plane clustering techniques. kPC only considers
the similarities among the samples in a cluster plane and ignores
the dissimilarities. PPC is proposed to address the problem. In fact,
PPC is based on multisurface proximal support vector machine classi-
fication via generalized eigenvalues (GEPSVM) [15], while TWSVC
is an extension to twin support vector machine (TWSVM) [16],
[17]. TWSVM is a milestone in the development of the multiplane-
based classification, which can yield solid theoretical results and
outperforms GEPSVM and support vector machine (SVM) in terms of
classification performance. Among kPC, PPC, and TWSVC, TWSVC
gains the best clustering result. However, this method formulates
the objective using squared L2-norm distance in a cluster plane,
which could exaggerate the effect of outliers. Furthermore, TWSVC
is computationally expensive, since it requires solving a series of
constrained quadratic programming problems (CQPPs) to determine
each of the k-cluster planes. This is an open problem raised in section
“conclusion” of [14].

In this brief, we aim to develop fast robust k-plane clustering
methods. For this purpose, a novel L1-norm distance minimization-
based robustTWSVC (RTWSVC) method is first proposed. It is
well known that L1-norm distance is more robust to outliers
than the L2-norm one, since it does not magnify the effect of
outliers [18], [19]. Solving the objective of RTWSVC is very chal-
lenging, because it is not only nonsmooth but also nonconvex.
As one of the important theoretical contributions of this brief,
we present a novel iterative algorithm for the derivation of the
clustering planes. However, based on the algorithm, RTWSVC, like
TWSVC, determines the k-cluster planes by solving a series of
CQPPs, leading to the expensive computational cost. To reduce the
computational costs of TWSVC and RTWSVC and inherit the merit
of the robustness of RTWSVC, fast RTWSVC (FRTWSVC) is further
developed. Likewise, an effective iterative algorithm is proposed to
solve FRTWSVC. In each iteration of the algorithm, only a system
of linear equations needs to be solved. In addition, some insightful
analysis on the existence of local minimum and the convergence
of the proposed algorithms are conducted. Theoretical studies and
extensive experimental results on several benchmark data sets verify
the effectiveness and applicability of our methods.

II. RELATED WORK

A. Notations

Suppose that X = [x1, . . . , xm ]T ∈ Rm×n is the data set with
m samples of n dimensions. The L2-norm of a vector is denoted
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by || · ||. Let sgn(·) be a sign function with sgn(·) = −1 if (·)
is a negative value and sgn(·) = 1 otherwise. The primary task of
clustering is to partition X into k clusters. We represent the samples
in the i-th cluster by Xi ∈ Rmi×n and those in the rest clusters by
Xi ∈ R(m−mi )×n , where mi denotes the number of samples in the
i-th cluster (i = 1, . . . , k). Note that Xi and Xi are two subsets of
X and X = [Xi , Xi ]T . A column vector of 1s of arbitrary dimension
is denoted by e, and the weight and bias of the i-th clustering
plane are denoted by wi ∈ Rn and bi ∈ R, respectively. Define
three augmented matrices: zi = [wT

i bi ]T ∈ Rn+1, Gi = [Xi e] ∈
Rmi×(n+1), and Hi = [Xi e] ∈ R(m−mi )×(n+1).

B. kPC

kPC [12] targets to cluster X into k clusters, and the samples of
the corresponding cluster get clustered around the cluster plane Pi

Pi = wT
i x + bi = 0 i = 1, . . . , k (1)

kPC first initializes the cluster assignment of X. For the current Xi ,
the k cluster planes are determined by minimizing the following
problem with i = 1, 2, . . . , k:

min
wi , bi

0.5||Xi wi + ebi ||2, s.t. wT
i wi = 1. (2)

The solution to (2) can be found by solving a standard eigenvalue
problem [12]. Then, each sample x can be relabeled by

Cluster(x) = argmin
i=1,..., k

||wT
i x + bi ||2. (3)

From (3), the corresponding clusters of the samples are updated.
Then, the new clustering planes are computed by (2). The process
continues till some terminate conditions are satisfied.

C. PPC

kPC considers the intracluster similarities among the samples in a
cluster plane but overlooks the intercluster separation. PPC [13] aims
to overcome this problem.

With the initial cluster assignment of X, like kPC, PPC iteratively
updates the cluster planes and the corresponding clusters of the
samples by

min
wi , bi

||Xi wi + ebi ||2 − c||Xi wi + ebi ||2, s.t. wT
i wi = 1 (4)

and (3), respectively, till some terminate conditions are satisfied.
In (4), c is a regularization parameter balancing different contributions
of the two terms. Clearly, PPC is a k-plane clustering extension to
GEPSVM [15].

D. TWSVC

Recently, Wang et al. [14] proposed a more powerful k-plane
clustering method than kPC and PPC, called TWSVC, which is based
on TWSVM [17]. With the initial cluster assignment of X, TWSVC
finds the k−cluster planes of (1) by solving the following problem
with i = 1, . . . , k:

min
wi ,bi

0.5||Xi wi + ebi ||2 + ceT ξ i

s.t. |Xi wi + ebi | + ξ i ≥ e, ξ i ≥ 0 (5)

where ξ i is a symmetric Hinge loss function. Then, we use (3)
to update the corresponding clusters of the samples. Based on
the updated clusters, we proceed to update the k−cluster planes
of (1). The process continues till some terminate conditions are

satisfied. Note that the cluster-updating process is the same as that
of kPC or PPC. Rewrite (5) as

min
wi , bi

0.5||Xi wi + ebi ||2 + ceT ξ i

s.t. Ui (Xi wi + eb) + ξ i ≥ e, ξ i ≥ 0 (6)

where Ui = diag(sign(Xi wi + ebi )) is a diagonal matrix. The
constraint of the problem is nonconvex. TWSVC solves (6) using the
constrained concave–convex procedure (CCCP) [20], [21], where Ui
is viewed as a variable that depends on wi and bi (or zi ). Specifically,
compute Ui based on the current zi obtained in the last iteration and
then update zi by solving the Wolfe dual problem of (6). Suppose

that z(p)
i is the solution of the pth iteration, and z(p+1)

i is the one

of the (p + 1)th iteration, where z(p+1)
i = (GT

i Gi )
−1M(p)T

i α
(p+1)
i .

Here, M(p)
i = U(p)

i Hi and α
(p+1)
i denote the updated Lagrangian

multiplier vector that is defined as

α
(p+1)
i = argmin

αi

0.5αT
i M(p)

i

(
GT

i Gi
)−1M(p)T

i αi − eT αi

s.t. 0 ≤ αi ≤ ce. (7)

The results of [17] demonstrate the promising performance
of TWSVC.

III. L1-NORM DISTANCE MINIMIZATION-BASED FAST ROBUST

TWIN SUPPORT VECTOR K-PLANE CLUSTERING

In this section, we first propose RTWSVC, a new k-plane clustering
method. Then, an FRTWSVC method is developed.

A. Linear RTWSVC and FRTWSVC

It has been well known that squared L2-norm distance measure-
ment is nonrobust to outliers, which means that TWSVC may not
obtain the desired solution. In the literature, the L1-norm distance is
usually applied to handle this problem [18], [19]. Illuminated by this,
we propose a new method for k-plane clustering called RTWSVC.
Same as TWSVC, we first partition the samples of X into k clusters,
and then use

min
wi ,bi

0.5||Xi wi + ebi ||1 + ceT ξ i

s.t. |Xi wi + ebi | + ξ i ≥ e, ξ i ≥ 0 (8)

to update the k−cluster planes. Update the corresponding clusters
of the samples using (3). The process continues till some terminate
conditions are satisfied.

As observed, in each cluster update, TWSVC minimizes the similar
problem of TWSVC in (5) using the L1-norm distance rather than
the squared L2-norm one. Rewrite (8) as

min
zi

0.5||Gi zi ||1 + ceT ξ i , s.t. |Hi zi | + ξ i ≥ e, ξ i ≥ 0. (9)

Solving the problem is very difficult, because it involves non-
smooth L1-norm terms and the nonconvex constraints. Recently, there
have been a lot of algorithms to solve nonsmooth problems, such
as [19], [22] and [23]. Zhong [19] proposed a gradient-ascending
iterative procedure to minimize the L1-norm distance maximization–
minimization problem. The research [22] proposed a randomized
block-coordinate variant of the classic Frank–Wolfe algorithm to
solve the dual structural SVM problem involving convex objective.
In [23], generalized conditional gradient with gradient sliding is
proposed to solve nonsmooth unconstrained composite optimization
problems. Clearly, our objective has a different formulation. Next,
we propose an iterative algorithm to solve (9).
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Note that ||Gi zi ||1 = ∑
j |gi, j zi |, where gT

i, j ∈ Rn denotes the
j -th row of Gi . Solving the problem is very challenging, since
it contains nonconvex constraints and absolute value operations.
We derive its solution as follows.

Rewrite (9) with the following formulation:
min

zi
0.5zT

i

∑

j

(
gT

i, j gi, j /|gi, j zi |
)

zi + ceT ξ i

s.t. diag(sign(Hi zi ))(Hi zi ) + ξ i ≥ e, ξ i ≥ 0. (10)

Let d j, j = 1/|gi, j zi | and construct the diagonal matrices Di with its
j -th diagonal entry as d j j . To the end, (10) becomes

min
zi

0.5zT
i GT

i Di Gi zi + ceT ξ i , s.t. Fi (Hi zi ) + ξ i ≥ e, ξ i ≥ 0

(11)

where Fi = diag (sign(Hi zi )). Di and Fi are dependent on zi and
thus are two latent variables. We propose an iterative algorithm
described in Algorithm 1 to obtain the solution zi .

Algorithm 1 Efficient Iterative Algorithm to Solve Problem (9)

Input: Input data matrices Xi and Xi .
Set p = 0. Initialize z(p)

i .
Construct the matrices Gi = [Xi e] and Hi = [Xi e].
While not converge do

1. Compute the diagonal matrix D(p)
i with its j -th diagonal entry

d(p)
j j = 1/|gi, j z(p)

i |, where gi, j ∈ R1×n denotes the j -th
row of Gi .

2. Compute the diagonal matrix F(p)
i =diag(sign(Hi z

(p)
i )).

3.Compute z(p+1)
i by solving

z(p+1)
i = arg min

zi
0.5zT

i GT
i D(p)

i Gi zi + ceT ξ i ,

s.t. F(p)
i (Hi zi ) + ξ i ≥ e, ξ i ≥ 0.

5. p = p + 1.
End while
Output: The learned wi and bi from zi = [wT

i bi ]T .

As seen, in each iteration, zi is computed with current Di and Fi ,
and then Di and Fi are updated with currently computed zi . The
iteration continues until the algorithm converges. There is no doubt
that the problem in step 3 of Algorithm 1 is convex, which can be
solved by the following Wolfe dual formation:

β
(p+1)
i = arg min

β i

0.5βT
i F(p)

i Hi
(
GT

i D(p)
i Gi

)−1HT
i F(p)T

i βi −eT βi

s.t. 0 ≤ β i ≤ ce (12)

where β i is the Lagrangian multiplier vector. Once β
(p+1)
i is

known, the updated z(p+1)
i in the (p + 1)th iteration is defined

as z(p+1)
i = (GT

i D(p)
i Gi )

−1HT
i F(p)T

i β
(p+1)
i .

Recall that TWSVC is based on TWSVM for classifica-
tion [16], [17]. Similar to the iterative algorithm of TWSVC,
Algorithm 1 requires solving a series of CQPPs, leading to the
expensive computational cost. Previous efforts have shown that an
effective method, which not only speeds up the computation but
also loses no performance of TWSVM, is to convert the original
CQPP into a least-squares problem [24] by replacing the inequality
constraints with equality ones. Inspired by this, we promote the
computational efficiency of RTWSVC by reformulating problem (8)

in each cluster updated as follows:
min

wi ,,bi
||Xi wi + ebi ||1 + c||ξ i ||1, s.t. |Xi wi + ebi | + ξ i = e. (13)

Simply speaking, our problem is based on the efficient least-squares
version of TWSVM [24]. We call the reformulation FRTWSVC.
We can rewrite (13) with the following problem:

min
zi

||Gi zi ||1 + c||ξ i ||1, s.t. |Hi zi | + ξ i = e. (14)

Rewrite (14) with the following equivalent formulation:
min

zi
zT

i

∑

j

(
gT

i, j gi, j /|gi, j zi |
)
zi + c

∑

j

((ξ i, j )
2/|ξ i, j |)

s.t. diag(sign(Hi zi ))(Hi zi ) + ξ i = e (15)

where ξ i, j the j -th element of ξ i . Let a j, j = 1/|ξ i, j | and construct
the diagonal matrix Ai with its j -th diagonal entry as a j j . To the
end, (15) becomes

min
zi

zT
i GT

i Di Gi zi + cξT
i Ai ξ i , s.t. Fi (Hi zi ) + ξ i = e. (16)

For the definitions of Di and Fi [see (11)]. Ai , Di , and Fi are
dependent on zi . We can propose the similar iterative algorithm of
Algorithm 1 to obtain the solution zi . The algorithm is described
in Algorithm 2.

Algorithm 2 Efficient Iterative Algorithm to Solve Problem (14)

Input: Input data matrices Xi and Xi .
Initialize z(p)

i , and set p = 0.
Construct the matrices Gi = [Xi e] and Hi = [Xi e].
While not converge do

1. Compute the diagonal matrix D(p)
i with its j -th diagonal entry

d(p)
j j = 1/|gi, j z(p)

i |, where gi, j ∈ R1×n denotes the j -th
row of Gi .

2. Compute the diagonal matrix F(p)
i =diag(sign(Hi z

(p)
i )).

3. Compute the diagonal matrix A(p)
i with its j -th diagonal entry

as a(p)
j j = 1/|ξ i, j |, where ξ i, j is the j -th element of ξ i .

4. Compute z(p+1)
i by solving

z(p+1)
i = arg min

zi
zT

i GT
i D(p)

i Gi zi + cξT
i A(p)

i ξ i ,

s.t. F(p)
i (Hi zi ) + ξ i = e..

5. p = p + 1.
End while
Output: The learned wi and bi from zi = [wT

i bi ]T .

In each iteration of Algorithm 2, one needs to solve the least-
squares problem in step 4. Substituting the equality constraints into
the objective function, the problem becomes

z(p+1)
i = min

zi
zT

i GT
i D(p)

i Gi zi

+ c(e − F(p)
i Hi zi )

T A(p)
i (e − F(p)

i Hi zi ). (17)

Taking the derivative of (17) with respect to zi and set-
ting it as zero, we obtain z(p+1)

i = (1/cGT
i D(p)

i Gi +
HT

i F(p)
i A(p)

i F(p)
i Hi )

−1HT
i F(p)

i A(p)
i e. Since F(p)

i and A(p)
i are diag-

onal matrices, and each of the diagonal elements of F(p)
i are either

1 or −1, F(p)
i A(p)

i F(p)
i = A(p)

i . Therefore, we have

z(p+1)
i = (

1/cGT
i D(p)

i Gi + HT
i A(p)

i Hi
)−1HT

i F(p)
i A(p)

i e. (18)

Hence, we can compute a system of linear equations in (18).
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The following theorems guarantee the convergence of
Algorithms 1 and 2. Recall that TWSVC can be guaranteed
to yield a local minimal solution under the CCCP. Similarly,
we show that the solutions of our RTWSVC and FRTWSVC are
also local minimal by the following theorems.

Theorem 1: Algorithm 1 monotonically decreases the objective of
problem (9) in each iteration.

Proof: First, we rewrite the problem in step 3 of Algorithm 1 with
the following equivalent formulation:
z(p+1)

i =arg min
zi

0.5zT
i GT

i D(p)
i Gi zi + ceT max

(
0, e − F(p)

i Hi zi
)
.

(19)

According to step 3 in Algorithm 1, in the p iteration, we have

0.5z(p+1)T

i GT
i D(p)

i Gi z(p+1)
i + ceT max

(
0, e − F(p)

i Hi z
(p+1)
i

)

≤ 0.5||Gi z(p)
i ||1 + ceT max

(
0, e − F(p)

i Hi z(p)
i

)
. (20)

For each j , we have

(∣∣gi, j z(p+1)
i

∣
∣ − ∣

∣gi, j z(p)
i

∣
∣)2

= (
gi, j z(p+1)

i

)2 + (
gi, j z(p)

i

)2 − 2
∣
∣gi, j z(p+1)

i

∣
∣
∣
∣gi, j z(p)

i

∣
∣ ≥ 0

which leads to
(
gi, j z(p+1)

i

)2

2
∣
∣gi, j z(p)

i

∣
∣

+
∣∣gi, j z(p)

i

∣∣

2
− ∣

∣gi, j z(p+1)
i

∣
∣ ≥ 0

⇒ ∣
∣gi, j z(p+1)

i

∣
∣ −

(
gi, j z(p+1)

i

)2

2
∣
∣gi, j z(p)

i

∣
∣

≤
∣
∣gi, j z(p)

i

∣
∣

2

= ∣
∣gi, j z(p)

i

∣
∣ −

(
gi, j z(p)

i

)2

2
∣
∣gi, j z(p)

i

∣
∣

⇒ 2
∣
∣gi, j z(p+1)

i

∣
∣ −

(
gi, j z(p+1)

i

)2

∣
∣gi, j z(p)

i

∣
∣

≤ 2
∣
∣gi, j z(p)

i

∣
∣ −

(
gi, j z(p)

i

)2

∣
∣gi, j z(p)

i

∣
∣

. (21)

Thus, the following inequality holds:
∑

j

⎛

⎝
∣
∣gi, j z(p+1)

i

∣
∣ − 0.5

(
gi, j z(p+1)

i

)2

∣
∣gi, j z(p)

i

∣
∣

⎞

⎠

≤
∑

j

⎛

⎝
∣
∣gi, j z(p)

i

∣
∣ − 0.5

(
gi, j z(p)

i

)2

∣
∣gi, j z(p)

i

∣
∣

⎞

⎠

⇒ ∣
∣
∣
∣Gi z(p+1)

i

∣
∣
∣
∣
1 − 0.5z(p+1)T

i GT
i D(p)

i Gi z(p+1)
i

≤ ∣
∣
∣
∣Gi z(p)

i

∣
∣
∣
∣
1 − 0.5z(p)T

i GT
i D(p)

i Gi z
(p)
i . (22)

Using the equality F(p)
i Hi z

(p)
i = |Hi z(p)

i | and combin-
ing (20) and (22), we arrive at
∣
∣
∣
∣Gi z(p+1)

i

∣
∣
∣
∣
1 + ceT max

(
0, e − F(p)

i Hi z(p+1)
i

)

≤ ||Gi z(p)
i

∣
∣
∣
∣
1 + ceT max

(
0, e − ∣

∣Hi z
(p)
i

∣
∣). (23)

Cleary, the function f (zi ) = |Hi zi | is convex with respect
to zi . According to the research [25], for any convex func-
tion f (x) with respect to variable x, the inequality f (x) ≥
f (x(t)) + ∇ f (x)|x=x(t) (x − x(t)) is satisfied, where ∇x f (x)|x=x(t)

denotes the gradient of f (x) at point x(t). Using this fact and

∇ f (zi )|zi=z(p)
i

= diag(sign(Hi z(p)
i ))Hi , we have |Hi z(p+1)

i | ≥
|Hi z(p)

i | + diag(sign(Hi z(p)
i ))Hi (z

(p+1)
i − z(p)

i ), leading to

∣
∣Hi z

(p+1)
i

∣
∣ ≥ diag

(
sign

(
Hi z

(p)
i

))
Hi z(p+1)

i = F(p)
i Hi z

(p+1)
i

⇒ e − ∣
∣Hi z(p+1)

i

∣
∣ ≤ e − F(p)

i Hi z
(p+1)
i . (24)

We further have eT max(0, e − |Hi z(p+1)
i |) ≤

eT max(0, e − F(p)
i Hi z

(p+1)
i ), which leads to

∣
∣
∣
∣Gi z(p+1)

i

∣
∣
∣
∣
1 + eT max

(
0, e − ∣

∣Hi z
(p+1)
i

∣
∣)

≤ ∣
∣
∣
∣Gi z(p+1)

i

∣
∣
∣
∣
1 + eT max

(
0, e − F(p)

i Hi z(p+1)
i

)
.

Using the inequality and (23), one gets

∣
∣
∣
∣Gi z

(p+1)
i

∣
∣
∣
∣
1 + ceT max

(
0,e − ∣

∣Hi z
(p+1)
i

∣
∣) ≤ ∣

∣
∣
∣Gi z

(p)
i

∣
∣
∣
∣
1

+ ceT max
(
0, e − ∣

∣Hi z
(p)
i

∣
∣). (25)

Since problem (9) is lower bounded by 0, Algorithm 1 converges.
The equality in (25) holds when the algorithm converges. Therefore,
the objective value of problem (9) decreases in each iteration till the
algorithm converges. �

Theorem 2: Algorithm 1 converges to a local minimal solution to
problem (9).

Proof: Define the Lagrangian function of problem (9) as

L(zi , ξ i ) = ||Gi zi ||1 + ceT ξ i − αT (|Hi zi | + ξ i − e) − βT ξ i

(26)

where α and β are the vectors of Lagrange multipliers. Taking the
derivative of L(zi , ξ i ) with respect to zi and ξ i , respectively, and
setting them as 0, we get the Karush-Kuhn-Tucker (KKT) condition
of problem (9) as follows:
GT

i sign(Gi zi ) + HT
i diag

(
sign(zT

i Hi )
)
α=0, ce − α − β = 0. (27)

In each iteration of Algorithm 1, we find the optimal z(p+1)
i to the

problem in step 3. Therefore, the converged solution of Algorithm 1
satisfies the KKT condition of the problem. Define the Lagrangian
function of the problem in step 3 of Algorithm 1 as

L2(zi , ξ i ) = 0.5zT
i GT

i D(p)
i Gi zi + ceT ξ i

− αT (F(p)
i (Hi zi ) + ξ i − e) − βT ξ i . (28)

Taking the derivative of L2(zi , ξ i ) with respect to zi and ξ i ,
respectively, and setting them as zero gives

GT
i D(p)

i Gi zi − HT
i F(p)

i α = 0, ce − α − β = 0. (29)

According to the definitions of D(p)
i and F(p)

i in Algorithm 1,
the equivalence between (27) and (29) holds when Algorithm 1
converges. Thus, the converged solution of Algorithm 1 satisfies (27)
[the KKT condition of the problem in (9)] and thus is a local
minimum solution to problem (9). In this way, the proof of Theorem 2
is completed. �

Theorem 3: Algorithm 2 monotonically decreases the objective of
problem (14) in each iteration.

Proof: Rewriting the problem in step 4 of Algorithm 2 by
substituting the equality constraint into the objective gives

z(p+1)
i = min

zi
0.5zT

i GT
i D(p)

i Gi zi

+ 0.5c
(
e − F(p)

i Hi zi
)T A(p)

i

(
e − F(p)

i Hi zi
)

(30)
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which indicates

0.5z(p+1)T

i GT
i D(p)

i Gi z(p+1)
i

+ 0.5c
(
e − F(p)

i Hi z
(p+1)
i

)T A(p)
i

(
e − F(p)

i Hi z(p+1)
i

)

≤ 0.5z(p)T

i GT
i D(p)

i Gi z
(p)
i + 0.5c

(
e − F(p)

i Hi z
(p)
i

)T
A(p)

i

×
(

e − F(p)
i Hi z(p)

i

)
. (31)

According to step 3 of Algorithm 2, we can define ξ
(p+1)
i = e −

F(p)
i Hi z

(p+1)
i and ξ

(p)
i = e − F(p)

i Hi z(p)
i . The former is an update

of the latter. Applying the definitions of D(p)
i and A(p)

i in step 1
and step 3, problem (31) can be rewritten as the following one by
decoupling the computation for each row for D(p)

i and A(p)
i :

0.5

⎛

⎝
∑

j

(
gi, j z(p+1)

i

)2

∣
∣gi, j z(p)

i

∣
∣

+ c
∑

j

(
ξ
(p+1)
i, j

)2

∣
∣ξ (p)

i, j

∣
∣

⎞

⎠

≤ 0.5

⎛

⎝
∑

j

(
gi, j z(p)

i

)2

∣∣gi, j z(p)
i

∣∣
+ c

∑

j

(
ξ
(p)
i, j

)2

∣∣ξ (p)
i, j

∣∣

⎞

⎠ . (32)

Using inequality (21) in the proof of Theorem 1 and adding it to (32)
gives

∥∥
∥Gi z

(p+1)
i

∥∥
∥

1
+ 0.5c

∑

j

(
ξ
(p+1)
i, j

)2

∣
∣ξ (p)

i, j

∣
∣

≤∥
∥Gi z(p)

i

∥
∥

1+0.5c
∑

j

(
ξ
(p)
i, j

)2

∣
∣ξ (p)

i, j

∣
∣

.

(33)

With the similar proof of (22), it is easy to conclude that

c
∑

j

⎛

⎝
∣
∣ξ (p+1)

i, j

∣
∣ − 0.5

(
ξ
(p+1)
i, j

)2

∣
∣ξ (p)

i, j

∣
∣

⎞

⎠≤c
∑

j

⎛

⎝
∣
∣ξ (p)

i, j

∣
∣ − 0.5

(
ξ
(p)
i, j

)2

∣
∣ξ (p)

i, j

∣
∣

⎞

⎠.

(34)

Combining (33) and (34) leads to

∣
∣
∣
∣Gi z(p+1)

i

∣
∣
∣
∣
1 + c

∣
∣
∣
∣ξ (p+1)

i

∣
∣
∣
∣
1 ≤ ∣

∣
∣
∣Gi z

(p)
i

∣
∣
∣
∣
1 + c

∣
∣
∣
∣ξ (p)

i

∣
∣
∣
∣
1. (35)

Algorithm 2 converges, since the problem in (14) has a lower bound 0.
In such a case, the equality in (35) holds. Therefore, the objective
value of problem (14) decreases in each iteration till the algorithm
converges. �

Theorem 4: Algorithm 2 will converge to a local minimal solution
to problem (14).

Proof: Substituting the equality constraints of (14) into the
objective function gives minzi

∣
∣
∣
∣Gi zi

∣
∣
∣
∣
1 + c

∥
∥e − ∣

∣Hi zi
∣
∣
∥
∥

1, which is
rewritten as

min
zi

∑

j

|gi, j zi | + c
∑

j

|1 − |hi, j zi || (36)

where hi, j denotes the j -th row of Hi . Define the Lagrangian
function of (36) as L(zi ). Taking the derivative of L(zi ) with respect
to zi and setting it as 0, we get the KKT condition of problem (36)
as follows:
∑

j

sign(gi, j zi )g
T
i, j + c

∑

j

sign(1 − |hi, j zi |)
× (−sign(hi, j zi ))h

T
i, j = 0. (37)

In each iteration of Algorithm 2, the optimal solution to the problem
in step 4 is found. Therefore, the converged solution satisfies the
KKT condition of the problem. Rewrite the problem in step 4 of

Algorithm 2 as

z(p+1)
i = min

zi
zT

i

⎛

⎝
∑

j

d(p)
j, j gT

i, j gi, j

⎞

⎠ zi

+ c
∑

j

a(p)
j, j (1 − f(p)

j j hi, j zi )
2 (38)

where f(p)
j, j = sign(hi, j zi ) is the j -th diagonal element of F(p)

i .
Forming the Lagrangian function of the objective of (38) and setting
its derivative with respect to zi as zero, one gets

∑

j

d(p)
j j gT

i, j gi, j zi + c
∑

j

a(p)
j j hT

i j f(p)T

j j (f(p)
j j hi j zi − 1) = 0. (39)

Since gi, j zi satisfies gi, j zi = sign(gi, j zi )|gi, j zi | and d j j =
1/|gi, j zi |, we have

∑

j

d j j gT
i, j gi, j zi =

∑

j

sign(gi, j zi )g
T
i, j . (40)

Similarly, we have f j, j hi, j zi −1 = sign(f j, j hi, j zi −1)|f j, j hi, j zi −1|.
Since f j, j = sign(hi, j zi ) and a j, j = 1/|f j, j hi, j zi − 1| according to
step 3 of Algorithm 2, we achieve that

c
∑

j

a j, j hT
i, j fT

j, j (f j, j hi, j zi − 1)

= c
∑

j

hT
i, j sign(hi, j zi )sign(sign(hi, j zi )hi, j zi − 1)

= c
∑

j

sign(1−|hi, j zi |)sign(−hi, j zi )h
T
i, j . (41)

Using the three equalities in (39)–(41), it is easy to observe that
problems (37) and (39) are the same when Algorithm 2 converges.
This implies that the converged solution satisfies (37) and thus is a
local minimal solution to problem (14). �

Suppose that Xi and Xi are given. Problem (7) shares the same for-
mulation of TWSVM; thus, its time complexity is the same as that of
TWSVM, which is mainly dominated by two parts: solving a CQPP
and matrix inverse. The time complexity of solving the CQPP in (7)
is no more than m3/4 when Xi is equivalent to Xi in the number of
samples [12]. The time complexity of computing the inverse of GT

i Gi
is around n3. Thus, the total time complexity of solving problem (7)
is around m3/4 + n3. TWSVC costs no more than t (m3/4 + n3)

time complexity to solve problem (6), where t is the iterative number
of the CCCP. Likewise, Algorithm 1 is used to solve CQPP (11) of
RTWSVC iteratively that is similar to (7); thus, its time complexity is
s(m3/4+n3), where s is the iterative number. In contrast, FRTWSVC
solves a system of linear equations in each iteration, whose time
complexity is around ln3, which is mainly dominated by the inverse
computation of matrix 1/cGT

i D(p)
i Gi + HT

i A(p)
i Hi , where l is the

iterative number. Without loss of generality, the iterative number of
each algorithm is by far less than the number of samples. Since
TWSVC and RTWSVC have cubic time complexity in the number
of samples, FRTWSVC performs faster in the case of m � n. This
is also supported by latter experimental results. It should be pointed
out that in clustering problems, when one is confronted with high-
dimensional data (or curse of dimensionality), a common practice is
to use a dimension-reduction technique to avoid this problem [29].
In this way, the clustering techniques finally handle the data sets
with m � n.

The matrix 1/cGT
i D(p)

i Gi + HT
i F(p)

i A(p)
i F(p)

i Hi could be rank
deficient in real problems. Note that the rank-deficiency problem
also appears in TWSVC. Following [16] and [17], we introduce a
regularization term εI to address this problem, where ε is a small
perturbation and I an identity matrix.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018 4499

TABLE I

CLUSTERING PERFORMANCE AND COMPUTING TIME OF LINEAR K MEANS ON THE BENCHMARK DATA SETS

Fig. 1. True distribution of the synthetic data set.

B. Nonlinear RTWSVC and FRTWSVC

We extend RTWSVC and FRTWSVC to the nonlinear cases via the
application of kernel trick. Similar to [14], [16] and [17], nonlinear
RTWSVC and FRTWSVC find the following k-kernel-generated
cluster surfaces instead of planes:

KPi = K (xT , XT )uT
i + bi = 0, i = 1, . . . , k (42)

where K is an appropriately selected kernel, and ui ∈ Rm . By using
the linear kernel K (xT , XT ) = xT XT and defining wi = Xui , (42)
becomes (1). This means that the cluster planes can be obtained as
a special case of (42).

In line with the arguments in Section III-A, in each clus-
ter update, our nonlinear RTWSVC and FRTWSVC problems
generalize (8) and (13), respectively, to

(RTWSVC)

min
ui , Xi ,Xi ,bi

||K (Xi , XT )ui + ebi ||1 + ceT ξ i

s.t. |K (Xi , XT )ui + ebi | + ξ i ≥ e, ξ i ≥ 0, i = 1, . . . , k

(43)

(FRTWSVC)

min
ui , Xi ,Xi ,bi

||K (Xi , XT )ui + ebi ||1 + c||ξ i ||1
s.t. |K (Xi , XT )ui + ebi | + ξ i = e, i = 1, . . . , k. (44)

The two problems can be solved using the same iterative proce-
dures of Algorithms 1 and 2, respectively. Since K (Xi , XT ) and
K (Xi , XT ) are in Rmi×m and R(m−mi )×m , the two methods, like
TWSVC, require inverse of matrix with size m × m. In practice,
the rectangular kernel technique [26] can be applicable to reduce the
dimensions of the matrices, as done in [14], [16] and [17].

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed RTWSVC and
FRTWSVC, we conduct experiments on a synthetic data set and sev-
eral benchmark data sets [14], [27]. Fig. 1 plots the true distribution
of the synthetic data set. The synthetic data set is constructed as
follows. We generated 2-D datapoints under the Gaussian distribution,
which belong to two clusters and are distinguished by “o” and “�.”
We inserted two and one outliers into the clusters “o” and “�,”
respectively. The same experiments are also conducted by K means,
PPC, TWSVC, RTWSVC, and FRTWSVC.

To measure the clustering performance, we use the metric accuracy,
which is defined in [14]. Specifically, given the cluster labels yi ,

TABLE II

CLUSTERING PERFORMANCE AND COMPUTING TIME OF LINEAR kPC,
PPC, TWSVC, RTWSVC, AND FRTWSVC ON THE BENCHMARK

DATA SETS (“−” MEANS THAT WE STOP EXPERIMENTS
AS COMPUTING TIME IS VERY HIGH)

the corresponding similarity matrix M ∈ Rm×m is easy to be
computed, where

M(i, j) =
{

1, if yi = y j

0, otherwise.

Suppose Mt and Mp are two similarity matrices, which are, respec-
tively, computed by the truth cluster labels of the data and the pre-
diction of a clustering method. The metric accuracy of the clustering
method is defined as the Rand statistic Accuracy = (n00 +n11 −m)/

(m2 − m) × 100%, where n00 and n11 are the respective num-
ber of 0s and 1s in Mt and Mp. All these methods require
selecting the initial cluster labels. Following [14], the initial
cluster labels of each method are selected using the effective
nearest neighbor graph (NNG)-based initialization. For a linear
case, PPC, TWSVC, RTWSVC, and FRTWSVC have two com-
mon parameters c and p (neighborhood size in the NNG-based
initialization). The parameter c is selected from the values
{2i |i = −5, −4, . . . , 4}, while p is selected from the val-
ues {1, 2, . . . , 5} as in [14]. The stopping tolerance of TWSVC,
RTWSVC, and FRTWSVC is set as the difference between two
successive iterations less than 0.001. In using TWSVM, RTWSVC,
and FRTWSVC, the initial cluster plane is set as the solution of PPC.

Fig. 2 depicts the result of each method on the synthetic data set.
p is simply set as 1. We can see from Fig. 2 that RTWSVC and
FRTWSVC are far better than other methods, which obtain 93.75%
clustering accuracy. Although, TWSVC is better than kPC, it only
achieves 52.07% clustering accuracy. This indicates the robustness



4500 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Fig. 2. Clustering result of each method on the synthetic data set.

TABLE III

CLUSTERING PERFORMANCE AND COMPUTING TIME OF NONLINEAR K MEANS ON THE BENCHMARK DATA SETS

Fig. 3. Convergence rate of TWSVC, RTWSVC, and FRTWSVC.

of TWSVC and FRTWSVC. Tables I and II show the clustering
performance and computing time of linear K means, kPC, PPC,
TWSVC, RTWSVC, and FRTWSVC. Note that the computing time
reported is the average of times to learn all the sets of clustering
planes under the combinations of c and p.

From Tables I and II, we first observe that RTWSVC and
FRTWSVC yield better accuracy than other methods. Second,
the computational advantage of our FRTWSVC over TWSVC and
RTWSVC is extremely obvious in the case of m � n. As seen,
on Mush data, TWSVC and RTWSVC take 7554.1 and 9279.6 s,
respectively, while FRTWSVC just takes 320.12 s. On the high-
dimensional data sets that do not satisfy m � n, such as Yale,
Ahythmia, and Isolet1, FRTWSVC is generally slower than both
TWSVC and RTWSVC. As in the previous analysis, on such data
sets, FRTWSVC may share similar time cost with that of TWSVC and
RTWSVC at each iteration, which, however, is much more expensive.
This attributes to the need for a more iterative number. RTWSVC
generally runs slower than TWSVC, since it, like RTWSVC, needs
a more iterative number. Fig. 3 plots the convergence rates of
TWSVC, RTWSVC, and FRTWSVC on Ecoli when X1 and X1
are given. As shown, TWSVC converges to zero in five iterations,
while RTWSVC and FRTWSVC converge to zero in ten iterations.
As analyzed previously, RTWSVC, like TWSVC, solves a series
of CQPPs. In such cases, naturally RTWSVC performs slower than
TWSVC. It should be pointed out that although the dimensionality
of the data set “Mist” is very high, it satisfies m � n. Therefore,
on Mist, FRTWSVC still runs far faster than RTWSVC and TWSVC
(in the experiment, we stop running RTWSVC and TWSVC, since
they cannot complete the entire learning within seven days). In real

TABLE IV

CLUSTERING PERFORMANCE AND COMPUTING TIME OF NONLINEAR

kPC, PPC, TWSVC, RTWSVC, AND FRTWSVC ON
THE BENCHMARK DATA SETS

applications, a common way to manipulate high-dimensional data,
such as clustering, is to resort to a dimension-reduction technique
to avoid the “curse of dimensionality” problem beforehand [29].
In this way, the clustering techniques finally handle the data sets
with m � n. Anyway, our results likewise show that FRTWSVC
and RTWSVC are better than TWSVC when directly coping with the
original high-dimensional data. Finally, we can observe that TWSVM
outperforms kPC and PPC in terms of clustering accuracy, which is
consistent with [14].

Owing to page constraints, we only depict the clustering accu-
racy of FRTWSVC versus the variations of the parameters c and
p in Fig. 4. Despite this, we find that RTWSVC has a similar
result in our experiments. From Fig. 4, we see that our FRWSVC
obtains significantly better clustering accuracy on most data sets
when p and c are set to be a smaller number and a larger number,
respectively.

Tables III and IV compare nonlinear K means, kPC, PPC, TWSVC,
RTWSVC, and FRTWSVC with a Gaussian kernel on 12 benchmark
data sets. All the k-plane methods have three common parameters:
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Fig. 4. Clustering accuracy of FRTWSVC versus the variations of the parameters c and p.

TABLE V

CLUSTERING PERFORMANCE AND COMPUTING TIME OF K MEANS ON THE NOISY BENCHMARK DATA SETS

c, p, and σ . The parameters p and σ exist in K means. In the
experiments, we select c and σ from the values {2i |i =
−5, −4, . . . , 4} and p from the values {1, 2, . . . , 5}. The stopping
tolerance of the nonlinear TWSVC, RTWSVC, and FRTWSVC
is 0.01. From the results of Tables III and IV, we see first that
TWSVC, RTWSVC, and FRTWSVC outperform other methods in
clustering accuracy, second that RTWSVC and FRTWSVC obtain
higher accuracy than other methods, and third that TWSVC and
RTWSVC run far slower than FRTWSVC. On the whole, these
observations are consistent with those drawn from the previous exper-
iments. In addition, we find that most of these nonlinear methods
outperform their linear versions on most data sets, demonstrating that
the introduction of kernel can promote the performance. Furthermore,
FRTWSVC is slightly better than RTWSVC, which is not true in the
last experiment. This indicates that there is no consistent winner when
comparing RTWSVC and FRTWSVC.

The relations between the parameters and the clustering accuracy
of our nonlinear FRTWSVC are shown in Fig. 5. Considering the
limit of pages, only the results of five data sets are shown. It can
be first seen from Fig. 5 that nonlinear FRTWSVC performs well in
the case of p ≤ 2, which is consistent with the linear FRTWSVC.
Second, the parameter c < 1 is a good option for most data sets.
Finally, the kernel parameter σ significantly affects the accuracy of
nonlinear FRTWSVC. On Zoo and Userknow, σ > 1 makes the

nonlinear FRTWSVC perform well, and on other three data sets,
it generally performs better in the case of σ > 1.

To illustrate the robustness of each method, we corrupt the training
set using a noise matrix No whose element is i.i.d. standard Gaussian
variables [28]. Given the training set X, each method learns on the
corrupted training set X+υNo , where υ = κ||X||F /||No||F is a given
noise factor. In the experiment, κ is set as 0.2. Tables V and VI report
the clustering performance and computing time of linear kPC, PPC,
TWSVC, RTWSVC, and FRTWSVC. As it can be seen, on most data
sets, the performance of each method is more or less impaired by
the corruption. Even so, our RTWSVC and FRTWSVC significantly
outperform other methods in most cases. In computational cost,
TWSVC and RTWSVC are inferior to FRTWSVC. Considering both
accuracy and efficiency, FRTWSVC is the best choice among all the
compared methods.

In the previous experiments, the cluster number k is set to the
true class size (z). This setting follows that of TWSVC in [14].
Therefore, the comparisons are made in a fair way. Despite this, it is
interesting to discuss the variation of clustering accuracy versus k.
For this purpose, we plot the clustering accuracy of linear kPC,
PPC, TWSVC, RTWSVC, and FRTWSVC on ten data sets versus
the different cluster number k, as shown in Fig. 6. The maximum
k is defined as about 3z. From Fig. 6, each method can generally
obtain very good accuracy when k equals z. We see that the best
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Fig. 5. Clustering accuracy of nonlinear FRTWSVC with different parameters on (a) zoo, (b) iris, (c) cleveland, (d) leaf, and (e) userknow.

Fig. 6. Clustering accuracy versus different cluster numbers k. (a) Iris. (b) Tae. (c) Cleveland. (d) Glass. (e) Wine. (f) Zoo. (g) Leaf. (h) Userknow.
(i) Isolet1. (j) Vowel.

accuracy of TWSVC is higher than PPC and kPC on most cases,
and the performance advantage of TWSVC is obvious. From the
comparisons, our FRTWSVC and RTWSVC have better results than

TWSVC in most cases. Furthermore, on some data sets, such as
Leaf, FRTWSVC obtains almost the same result at large value of k,
although it is inferior to TWSVC in the case of k = z.
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TABLE VI

CLUSTERING PERFORMANCE AND COMPUTING TIMES OF kPC, PPC,
TWSVC, RTWSVC, AND FRTWSVC ON THE NOISY DATA SETS

V. CONCLUSION

We presented two k-plane clustering methods, called RTWSVC and
FRTWSVC. The objective of RTWSVC was formulated using robust
L1-norm distance. To achieve this, we derived an effective iterative
algorithm where a series of constrained quadratic convex program-
ming problems need to be solved. To reduce the computational cost
of RTWSVC, FRTWSVC was further proposed. The objective was
achieved by a newly designed iterative algorithm. In each round of
optimization of the algorithm, we solved only a system of linear
equations. We presented some insightful analysis on the existence of
local minimum and the convergence of the algorithms. Furthermore,
we also generalized the RTWSVC and FRTWSVC methods to
handle the nonlinear k-plane clustering problems. The experimental
results on benchmark data sets indicated that: 1) both methods yield
better accuracy than the existing k-plane clustering methods and
2) FRTWSVC runs far faster than TWSVC and RTWSVC.
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