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Alkali oxygen cooking of lignocellulose offers lignin many structural properties and bioactivities for biorefinery.
In this work, milled wood lignin (MWL) and alkali oxygen lignin (AOL) were isolated from rice straw and
alkali oxygen black liquor, respectively. The lignin structure was characterized by spectroscopy and wet chemis-
try. Antioxidant activity of lignins was assessed by DPPH·and ABTS scavenging ability assay. Results showed the
oxidization and condensation of lignin occurred during alkali oxygen cooking. The p-hydroxyphenyl was more
easily removed from rice straw than guaiacyl and syringyl units. The ester or ether linkages derived from
hydroxycynnamic acids, and the main interunit linkages, i.e. β–O–4′ bonds, were mostly cleaved. Lignin-xylan
complex had high reactivity under alkali oxygen condition. Tricin, incorporated into lignin, was detected in
MWL but was absent in AOL. Nitrobenzene oxidation showed MWL can well represent the protolignin of rice
straw, and theproducts yield decreased dramatically after alkali oxygen cooking. AOLhadhigher radical scaveng-
ing ability than MWL indicating alkali oxygen cooking was an effective pathway for the enhancement of antiox-
idant activity of lignin.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Black liquor, as a bioenergy resource, is the main byproduct of pulp
and paper industry. It is the residue of lignin, few polysaccharides and
spent chemicals produced during chemical cooking process in digesters
[1]. Caustic alkali and kraft sulphate cooking, with the advantage of al-
kali recovery, are the common methods for wood pulp and bleached-
printing, writing papers production [2]. Alkaline cooking induces the
separation of carbohydrates and lignin. Simultaneously, this process is
also accompanied by the degradation of carbohydrates while the ligno-
cellulose is subjected to direct delignification using alkaline agents [3,4].
For decreasing the carbohydrates degradation and increasing the lignin
removal, oxygen is often combined with alkaline cooking, which is con-
sidered to be more selective (carbohydrates yield/delignification) than
kraft cooking [5]. However, the reactivity of lignocellulose especially
the lignin increases in the alkali oxygen system, leading to the formation
of various degradation products.
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As a major constituent of black liquor and a natural aromatic poly-
mer, lignin is an ideal biopolymer for producing chemicals and func-
tional materials. Lignin is the most abundant aromatic polymer in
lignocellulosic biomass, and is derived from three hydroxycinnamyl al-
cohols (p-coumaryl, coniferyl and sinapyl alcohols) [6]. The amorphous
lignin is constituted by p-hydroxypenyl (H), guaiacyl (G) and syringyl
(S) moieties cross-linked via β–O–4′, α–O–4′, β–5′, β–1′, 5–5′, 4–O–5′
and β–β' linkages. These structures give lignin many physicochemical
properties, which can be used to produce biofuels or value-added prod-
ucts such as absorbents, dispersants, lignin-based resin, adhesive, gel
and so on [7,8].

The structure of lignin is believed to change dramatically after
alkali oxygen cooking. These structural changes may give lignin differ-
ent structural properties and bioactivities for biorefinery. Isolation of
lignin from black liquor is a frequently used method for structural anal-
ysis and biological activity assay.Many separationmethods are reported
such as acid precipitation [9], ultrafiltration [10], supercritical fluid ex-
traction and solvent extraction [11], electrolysis [12]. In which, acid pre-
cipitation is the most common method to recover lignin because of the
simple procedure and low cost.

The structure-bioactivity relationship of lignin plays an important
role in the economic viability of lignocellulosic biorefinery or materials
production. In order to clarify the effects of the structure of protolignin
and chemical lignin on their bioactivities, in this work, the milled wood
lignin (MWL) and alkali oxygen lignin (AOL) were isolated from rice
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Table 2
Elemental analysis of MWL and AOL (%).

Samples C H N S O a

MWL 61.7 6.4 0.9 0.8 31.2
AOL 59.8 6.0 1.0 0.9 32.3

a The content of oxygen (O) element was calculated by the difference.
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straw and its alkali oxygen black liquor, respectively. The lignin prepa-
rations were structural characterized by spectroscopy and wet chemis-
try. The effects of structural changes on antioxidant activity of lignin
were evaluated via determining the radical scavenging activity of 1,1-
diphenyl-2-picrylhydrazyl (DPPH·) and 2,2′-Azino-bis (3-ethylbenzo-
thiazoline-6-sulfonic acid) diammonium salt (ABTS).
2. Materials and methods

2.1. Materials

Rice straw (Oryza sativa) and alkali oxygen black liquor used in this
workwere obtained froma pulpmill in Jiangsu, China. The alkali oxygen
black liquor and air-dried rice strawwere stored in a refrigerator at 4 °C
before use. The amount of lignin in rice strawwas20.6%, the polysaccha-
rides glucan, xylan and arabinan accounted for 22.4%, 20.6 and 2.7%, re-
spectively. The benzene-ethanol extractives and ash content was 2.5%
and 9.3%, respectively. The information of alkali oxygen black liquor
was as follows: pH, 10.0; solid content, 0.27 g/mL; density,
1.12 g/cm3; residual alkali, 1.25 g/L; lignin, 66.7 g/L. The 1,4-dioxane
for lignin extraction was purified with NaOH. Other chemicals were all
analytical or reagent grade and used as received without further
purification.
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2.2. Lignin isolation

Lignin in black liquor was precipitated by adjusting pH to 2 with
2 mol/L H2SO4, and stirring for 1 h at room temperature. The crude lig-
nin dissolved in 90% (w/w) acetic acid, and the soluble fraction was
slowly introduced into deionized water. The precipitate was washed
with deionized water (pH = 2, adjusted with 2 mol/L H2SO4) until the
odor of acetic acid disappeared, and then was freeze-dried to obtain
AOL.

The rice straw was ground in a Wiley mill. Particles between 40
mesh (0.425 mm) and 80 mesh (0.180 mm) were collected. The meals
were extracted with ethanol/benzene (1:2, v/v) in a Soxhlet extractor
for 8 h. The extractive-free sample was used for component analysis
and MWL isolation. The MWL was isolated according to the procedure
described by Björkman [13]. Extractive-free materials (4 g in each
bowl) were milled in a planetary ball mill (Fritsch GMBH, Pulverisette
7 premium line, Idar-Oberstein, Germany) at a frequency of 10 Hz for
2 h. Two 80 mL zirconium dioxide bowls with 25 zirconium dioxide
balls (1 cm diameter) in each bowl were used in themilling. An interval
of 5 min was set between every 15 min of milling to prevent
overheating. After ballmilling, the strawpowderwas carefully collected
and dried under vacuum. Ball-milled samples were suspended in 96%
(v/v) 1,4-dioxane/water with a solid/liquid ratio of 1/15 (g/mL) at
room temperature for 24 h. The extraction procedure was conducted
in the dark and under a nitrogen atmosphere. The mixture was centri-
fuged and washed with 96% 1,4-dioxane/water until the filtrate was
clear. Such operations were repeated thrice. The supernatants were
combined and the solvent was recycled by vacuum evaporation. The
crude ligninwas purified by 90% acetic acid identical to the purified pro-
cedure of AOL. No further purification was performed for the preserva-
tion of the structural features of the lignin preparations.
Table 1
Main components of lignin preparations (%).

Samples Polysaccharides Lignin Ash

Glucan Xylan Arabinan Klason Acid-soluble

MWL 1.3 ± 0.3 1.8 ± 0.4 0.1 ± 0.0 83.6 ± 0.6 3.9 ± 0.4 0.5 ± 0.0
AOL 0.8 ± 0.2 0.2 ± 0.1 0.5 ± 0.2 76.5 ± 0.4 9.1 ± 0.2 2.3 ± 0.0
2.3. Analytical methods

The content of lignin and sugars in rice straw,MWL andAOLwas an-
alyzed according to the method described by Gu et al. [14]. Elemental
analyser (Vario EL III, Elementar, Germany) was used to measure C, H,
N and S content of MWL and AOL, and the O content was calculated
by difference. The ultraviolet (UV) spectra of lignins were recorded on
a UV spectrometer (TU-1810, Puxi, Beijing, China).

The two-dementional heteronuclear singular quantum correlation
nuclear magnetic resonance (2D HSQC NMR), Fourier transform infra-
red spectroscopy (FTIR) spectra of lignins were recorded on an
AVANCE III 600 MHz instrument (Bruker, Switzerland) and a VERTEX
80 V FTIR spectrometer (Bruker, Germany), respectively, according to
the method described by our previous work [15].

Alkaline nitrobenzene oxidation (NBO) was applied to the
extractive-free rice straw (40–80 mesh), MWL and AOL according to
the procedure reported by Chen [16].

TheDPPH· and ABTS· radical scavenging assay ofMWL andAOLwas
performed using a spectrophotometric method. MWL and AOL was dis-
solved in 1,4-dioxane/water (9/1, v/v). The DPPH· was dissolved in an-
hydrous ethanol with the concentration of 6 × 10−5 mol/L. ABTS· was
generated by reacting 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sul-
fonic acid) diammonium salt (7 mM) with 2.45 mM potassium persul-
fate (K2S2O8) in ultrapure water and then letting the solution stand
for 15 h in the dark at room temperature. The radical solution was ad-
justed to obtain an UV absorbance of 0.70 ± 0.02 at 517 nm and
734 nm for DPPH· and ABTS·, respectively. The lignin solution with dif-
ferent volume was diluted to 100 μL using 1,4-dioxane/water and then
mixed with 100 μL DPPH· or ABTS·. The absorbance of tested samples
was measured using a microplate spectrophotometer (Infinite M200,
Kunshan, China). All measurements were performed in duplicate. The
radical scavenging ability was calculated using the formula (1):

Scavenging ability %ð Þ ¼ 1− Ai−Aj
� �

=A0
� �� 100% ð1Þ

where Ai is the absorbance of the tested sample; Aj is the absorbance of
the blank sample via 100 μL anhydrous ethanol replacing DPPH· or 100
250 260 270 280 290 300 310 320 330 340 350
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Fig. 1. UV spectra of MWL and AOL.
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Fig. 2. FTIR spectra of MWL and AOL.
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μL ultrapure water replacing ABTS·; A0 is the absorbance of the blank
sample via 100 μL anhydrous ethanol or ultrapurewater replacing lignin
solution.

3. Results and discussion

3.1. Chemical and elemental composition

The main chemical components of lignins are listed in Table 1. The
purity of both lignin preparations was over 85%, but the MWL had
higher polysaccharides than AOL. This phenomenonmay have two rea-
sons, the alkaline oxygen system has more selective for delignification
thus the degradation of carbohydrates is very little. Furthermore,
some water-soluble products such as hydroxy acids, volatile acids and
methanol from carbohydrates may be produced during alkali oxygen
cooking. The content of xylan in MWL was obviously higher than that
in AOL. The lignin-xylan is the main LCC linkages especially for gramin-
eous plants [17,18], therefore, it is reasonable to infer that lignin-xylan
has high reactivity in alkali oxygen system, causing the cleavage of
lignin-xylan linkages.

The carbon (C), hydrogen (H) and oxygen (O) were the primary el-
ements in MWL and AOL, followed by minor nitrogen (N) and sulfur
AOL 

AOL 

0/2.5–6.0) regions in the 2D HSQC NMR spetra of MWL and AOL.
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Image of Fig. 2
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(S) elements as shown in Table 2. The raw material was extracted by
benzene-ethanol solvent and no specific stepwas carried out to remove
protein. Therefore, the N and S elements in MWL are mainly from pro-
tein. After alkali oxygen cooking, the increase of oxygen content in
AOL suggests the oxidation reaction occurred or the presence of poly-
saccharides and fatty acids [19].

3.2. UV and FTIR spectra

As an aromatic compound, lignin has characteristic UV absorption
bands while carbohydrate has almost no absorption to UV light. There-
fore, the UV spectra of MWL and AOL were acquired to investigate the
structure of lignin. Fig. 1 illustrates the UV absorption spectra of MWL
Fig. 4.Main structures present in lignin of rice straw: (A)β–O–4′ ethers; (A′) β–O–4′ etherswit
(D) dibenzodioxocins; (E)α,β–diaryl ethers; (FA) ferulates; (I) cinnamyl alcohol end-groups; (J
guaiacyl units; (S) syringyl units; (H) p-hydroxyphenyl units; (T) tricin units connected with l
and AOL. Both lignins exhibit the typical UV spectra, and display a maxi-
mum absorption at about 280 nm, originating from the nonconjugated
phenolic groups, which are the characteristics of guaiacyl-syingyl rich lig-
nin [20]. The adsorption at 315 nm of MWL, derived from the conjugated
phenolic groups, p-coumarates and ferulates, could be observed clearly.
However, the signals of conjugated phenolic groups were hardly found
in the curve of AOL. This phenomenon reveals that the ester or ether
bonds between hydroxycynnamic acids and lignin are mostly cleaved
during alkali oxygen cooking. The absorption coefficient can well reflect
the conjugate degree of aromatic compounds. As shown in Fig. 1, the
maximum absorption of MWL was higher than that of AOL at 280 nm
under the same concentration. It is probably because theMWLhadhigher
content of nonconjugated phenolic groups than AOL [21].
h acylated γ-OH; (AOX) Cα-oxidizedβ–O–4′ structures; (B) phenylcoumarans; (C) resinols;
) cinnamyl aldehyde end-groups; (PCA) p-coumarates; (G) guaiacyl units; (G′) Cα-oxidized
ignin through β–O–4′ linkages.

Image of Fig. 4


Table 3
Main structural characteristics from integration of C\\H correlation peaks in the HSQC
spectra of MWL and AOL (%).

MWL AOL

Lignin interunit linkagesb

β\\O\\4′ substructures 56 7
β\\5′ Phenylcoumaran substructures 2 1

Lignin aromatic unitsa

p-Hydroxyphenyl (H) 9 27
Guaiacyl (G) 65 50
Syringyl (S) 26 23
S/G ratio 0.4 0.5

p-Hydroxycinnamates b

p-Coumarates (PCA) 32 1
Ferulates (FA) 4 4
PCA/FA ratio 8.0 0.3

Flavonoidb

Tricin (T) 21 0

a Molar percentages (H + G + S = 100).
b Interunit linkages, p-coumarate, ferulate and tricin molar contents as percentages of

lignin content (H + G + S).
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The FTIR spectra of MWL and AOL are shown in Fig. 2. The assign-
ment of the main absorption bands was assigned according to the pub-
lished literatures [22,23]. The absorption bands located around
1600 cm−1, 1500 cm−1 and 1400 cm−1 were related to the vibrations
of aromatic rings. The presence of these bands in the spectrum of AOL
indicates the presence of intact aromatic rings in it. The intensity of
peaks at 1710 cm−1 and 1648 cm−1 in the spectrum ofMWL, attributed
to stretching vibration of non-conjugate C_O and conjugate C_O, re-
spectively, was lower than that of AOL. It proves that the oxidization
of lignin occurred in the process of alkali oxygen cooking. The absorp-
tion band located 1260 cm−1 was attributed to stretching vibration of
C\\O in G units, and the intensity in AOL became higher than that in
MWL. The C5 position of G units is available for branching or some par-
ticular interunit linkages such as 5–5′, 4–O–5′, β–5′ linkages. Therefore,
it suggests the condensation reaction of lignin occurred under
alkali oxygen condition. The stretching vibration of C–O–C at
1160 cm−1was attributed tohydroxycynnamic acids ester or ether link-
ages, but the intensity became weak in AOL, indicating the cleavage of
ester or ether linkages occurred.
Fig. 5. Possible reaction mechanism of tr
3.3. 2D HSQC NMR spectra

1H–13C HSQC NMR is an important tool providing a general picture
of the entire lignin and LCC structure. The NMR spectra of MWL and
AOL are illustrated in Fig. 3. Fig. 4 depicts themajor lignin substructures
shown in Fig. 3. The signals related to the structural units and various
linkages were assigned according to the published literatures
[17,24,25]. A semi-quantitative analysis based on HSQC signalswas per-
formed using Bruker's Topspin 2.1 processing software, and the integral
method was according to the method described by del Río et al. [17].
The percentage of these structures was calculated by referring these
structural signals to the total number of aromatic rings (H + G + S)
[15]. The results are given in Table 3.

The main cross-signals in the aromatic region of the 2D HSQC NMR
spetra of lignin mainly corresponded to the aromatic rings of H, G and
S units. The prominent signals corresponded to p-coumarate (PCA)
and ferulate (FA) structures were also observed clearly in the aromatic
regions of the HSQC NMR spectra [17,24]. The G and S units were the
main structures in rice straw, accounted for about 63%, 32%, respec-
tively. The signals derived from tricin (T) were also detected in the
HSQC NMR aromatic region of MWL at δC/δH 94.2/6.56, 99.0/6.21,
104.0/7.32 and 104.7/7.05 assigned to C8–H8, C6–H6, C2′, 6′–H2′, 6′ and
C3–H3 correlations, respectively. Other signals in the aromatic region
were observed and assigned to the p-hydroxycinnamyl alcohol end
groups (I) and the cinnamaldehyde end goups (J).

The side chain region (δC/δH 50–90/2.5–6.0) of the 2D HSQC NMR
spectra provides useful information about the interunit linkages present
in lignin. As shown in Fig. 3, the correlation peaks from methoxyls and
side chain in β–O–4′ substructures (A) were the most prominent in
the HSQC spectra of MWL, followed by phenylcoumarans (B) and
other substructures such as resinols (C), dibenzodioxocins (D), α,β–
diaryl ethers (E). Polysaccharide signals, mainly originated from hemi-
cellulose, were observed in the side chain region of the 2D HSQC spec-
trum of MWL. The polysaccharide cross-peak signals of X2 (δC/δH 73.1/
3.08), X3 (δC/δH 73.9/3.31), X4 (δC/δH 75.9/3.55), X5 (δC/δH 62.7/3.34
and 3.95) were assigned to β–D–xylopyranoside [25], indicating that
the lignin-xylan is the prominent structural form of LCC.

After alkali oxygen cooking, the structure of ligninwasdisrupted sig-
nificantly according to the 2DHSQCNMR spectra of AOL. The correlation
signals of G′ units disappeared and the content of G and S units de-
creased. However, the S/G ratio in AOL (0.5) was higher than that in
MWL (0.4). The S units could be dissolved preferentially due to their
icin under alkali oxygen condition.

Image of Fig. 5


Table 4
The yield and ratio of nitrobenzene oxidation (NBO) products of rice straw,MWL andAOL.
Data are the mean of two measurements.

Samples Yield (mmol/g-lignin) V/S/H a

V S H Total

Rice straw 0.60 ± 0.04 0.25 ± 0.04 0.51 ± 0.05 1.36 ± 0.05 44/18/38
MWL 0.59 ± 0.05 0.28 ± 0.07 0.59 ± 0.04 1.46 ± 0.05 41/19/40
AOL 0.34 ± 0.00 0.19 ± 0.02 0.29 ± 0.05 0.82 ± 0.02 41/24/35

a V = Vanillin + Vanillic acid; S = Syringaldehyde + Syringic acid; H = p-
hydroxybenzaldehyde + p-hydroxybenzoic acid.
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lower degradation temperature and be cleaved with a much faster rate
than G units. Therefore, S units could be considered to have high disso-
lution rate in the alkali oxygen cooking process. The content of H units
in AOL was much more than that in MWL, which indicates that H
units were more easily dissolved in alkali oxygen system than the G
and S units. The C\\H correlation signals of PCA changed dramatically
but the C2–H2 and C6–H6 correlations of FA remained unchanged. The
Cβ–Hβ and C2, 6–H2, 6 correlations of PCA in MWLwere clearly observed
at δC/δH 113.8/6.28 and 130.1/7.47, respectively. The two correlation
signals were hard to be detected after alkali oxygen cooking. However,
the content of FA in AOL was similar to that in MWL. These results are
caused by the different linkages of lignin with PCA andwith FA. FA is al-
ways present as a bridge to crosslink lignin and carbohydrate, while PCA
is just cross-linked to the side chain of lignin [26]. The side chain struc-
tures of lignin were destroyed by alkali oxygen system mainly through
the cleavage of β–O–4′ linkages. The Cγ-Hγ correlations of β–O–4′ link-
ages clearly observed in the spectrum of MWLwas hardly found in that
of AOL, it implies that the ester linkages in γ-acetylated β–O–4′ sub-
structures (A'γ) or γ-ester LCC linkages are easily cleaved in
alkali oxygen sytem. Furthermore, the correlation signals of β–D–xylo-
pyranoside (X) were not observed in the side chain region of 2D HSQC
NMR of AOL, indicating that the covalent bonds of lignin-xylan are
cleaved under alkali oxygen condition. It is line with the results of com-
ponent analysis (Table 1). It is reasonable to deduce that LCC has high
reactivity in alkali oxygen system causing the fragmentization of LCC
structures.

Interestingly, the intensive signals derived from tricin (T) were de-
tected in MWL but were absent in AOL. Tricin monomer may dissolve
in black liquor and cannot be precipitated by H2SO4, which gives a
new insight into tricin isolation for its further application. However,
many researches pointed out tricin was present in alkaline lignin
[27,28]. Therefore, the structure of tricin may be disrupted under
alkali oxygen condition, and the possible reactionmechanismwas illus-
trated in Fig. 5. The ether linkages between C4′ and C2 positions were
attacked by hydroxyl radicals (HO·), and were cleaved through nucleo-
philic reaction forming enol structure. The enol structure was unstable
and the keto-enol tautomerism occurred. The formative structure
Fig. 6. The DPPH· and ABTS· scave
could be readily attacked by the oxygen under alkaline condition, lead-
ing to the cleavage of the C2–C3 bonds in etherified structures [29]. The
reaction mechanism is similar to the reverse reaction pathway of tricin
chemosynthesis [30]. However, it needs to be further investigated
through more detection method such as dynamic wet chemistry and
spectroscopy.

3.4. Alkaline nitrobenzene oxidation

The yield and ratio of NBO products of rice straw, MWL and AOL are
given in Table 4. The NBO products yield and ratio of MWLwere similar
to that of raw material, indicating that MWL can well represent the
protolignin of rice straw. The structure of FA and PCA in rice straw is
contributed to V and H units, respectively [31], causing the high content
of V and H units in NBO products. After alkali oxygen cooking, the NBO
products yield of AOL decreased dramatically, suggesting that AOL has
higher condensation degree than MWL. The H and G units, with spare
position adjacent to the phenolic hydroxyl group in benzene ring, are
easily cross-linked with reactive functional groups. However, it is
more difficult for S units to react with other groups since it has two –
OCH3 groups [32]. Therefore, the S/V ratio of AOL was higher than that
of MWL. Additionally, the PCA/FA ratio was about 8.0 in MWL
(Table 3), and the PCAwasmore easily removed than FA under alkaline
condition. Therefore, the drop of yield of H units (43%)wasmore severe
than that of V units (39%), resulting in the lower H/V ratio in AOL than
that in MWL.

3.5. Assessment of radical scavenging ability

The bioactivity especially antioxidant activity of lignin plays an im-
portant role in the process of plant growth, which bears outside pres-
sure and has potential application on agriculture [33,34]. The
antioxidant activity of lignin is directly related to the structure, thus
the structural changes of lignin inevitably cause the changes of the bio-
activity. As shown in Fig. 6, the DPPH· and ABTS· scavenging ability of
bothMWL and AOL increasedwith lignin concentration. Comparatively,
the DPPH· and ABTS· scavenging ability of AOL was obviously higher
than that of MWL, which means that alkali oxygen cooking is an effec-
tive method for the enhancement of antioxidant activity of lignin. The
structural changes of H, G, S units and functional groups such as conden-
sation degree, methoxy, phenolic hydroxyl and carboxy hydroxyl are
the potential reasons. Dizhbite et al. [35] pointed out that non-
etherified phenolic –OH groups, ortho-methoxy groups, hydroxyl
groups and the double bond between the outermost carbon atoms in
the side chain contributed the radical scavenging ability. In this work,
the increase of non-etherified phenolic –OH groups and carboxy groups
content in AOL caused by the cleavage ofβ–O–4′ linkages and the oxida-
tion under alkali oxygen cooking is the main reason.
nging ability of MWL and AOL.

Image of Fig. 6
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4. Conclusions

The alkaline cooking with oxygen represents a combined
delignification process but leads to structural and bioactive changes of
lignin. The increased oxygen content and high condensation degree of
alkali oxygen lignin (AOL) suggest the occurrence of oxidization and
condensation, causing a higher syringyl/guaiacyl (S/G) ratio compared
with that of milled wood lignin (MWL). The p-hydroxyphenyl units
are more easily removed from rice straw than G and S units. The signals
derived from tricin are found in rice strawMWLbut absent in AOL, it im-
plies that tricin is destroyed under alkali oxygen condition. Lignin-xylan
complex has high reactivity under alkali oxygen condition.
Alkali oxygen cooking is an effective pathway for the enhancement of
antioxidant activity of lignin.
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